What Aspects of Galaxy Environment Matter?

We determine what aspects of the density field surrounding galaxies most affect their properties. For Sloan Digital Sky Survey galaxies, we measure the group environment, meaning the host group luminosity and the distance from the group center (hereafter "groupocentric distance"). For comparison, we measure the surrounding density field on scales ranging from 100 h-1 kpc to 10 h-1 Mpc. We use the relationship between color and group environment to test the null hypothesis that only the group environment matters, searching for a residual dependence of properties on the surrounding density. Generally, red galaxies are slightly more clustered on small scales (~100-300 h-1 kpc) than the null hypothesis predicts, possibly indicating that substructure within groups has some importance. At large scales (>1 h-1 Mpc), the actual projected correlation functions of galaxies are biased at less than the 5% level with respect to the null hypothesis predictions. We exclude strongly the converse null hypothesis: that only the surrounding density (on any scale) matters. These results generally encourage the use of the halo model description of galaxy bias, which models the galaxy distribution as a function of host halo mass alone. We compare these results to proposed galaxy formation scenarios within the cold dark matter cosmological model.

[1]  S. White,et al.  Halo assembly bias and its effects on galaxy clustering , 2006, astro-ph/0605636.

[2]  M. Jarvis,et al.  A population of high-redshift type-2 quasars-I. Selection Criteria and Optical Spectra , 2006, astro-ph/0604382.

[3]  Ravi K. Sheth U. Pittsburgh,et al.  The environmental dependence of galaxy clustering in the Sloan Digital Sky Survey , 2006, astro-ph/0601407.

[4]  J. Frieman,et al.  Percolation Galaxy Groups and Clusters in the SDSS Redshift Survey: Identification, Catalogs, and the Multiplicity Function , 2006, astro-ph/0601346.

[5]  A. Connolly,et al.  The luminosity‐weighted or ‘marked’ correlation function , 2005, astro-ph/0512463.

[6]  R. Wechsler,et al.  The Dependence of Halo Clustering on Halo Formation History, Concentration, and Occupation , 2005, astro-ph/0512416.

[7]  Michael S. Warren,et al.  Very Small Scale Clustering and Merger Rate of Luminous Red Galaxies , 2005, astro-ph/0512166.

[8]  H. Mo,et al.  Observational Evidence for an Age Dependence of Halo Bias , 2005, astro-ph/0509626.

[9]  M. Blanton,et al.  The Scale Dependence of Relative Galaxy Bias: Encouragement for the “Halo Model” Description , 2004, astro-ph/0411037.

[10]  H. Mo,et al.  Properties of galaxy groups in the Sloan Digital Sky Survey – I. The dependence of colour, star formation and morphology on halo mass , 2005, astro-ph/0509147.

[11]  S. White,et al.  The age dependence of halo clustering , 2005, astro-ph/0506510.

[12]  J. Brinkmann,et al.  New York University Value-Added Galaxy Catalog: A Galaxy Catalog Based on New Public Surveys , 2005 .

[13]  R. Nichol,et al.  The Intermediate-Scale Clustering of Luminous Red Galaxies , 2004, astro-ph/0411557.

[14]  R. Davé,et al.  Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies , 2004, astro-ph/0408564.

[15]  N. Katz,et al.  The Galaxy Angular Correlation Functions and Power Spectrum from the Two Micron All Sky Survey , 2003, astro-ph/0304005.

[16]  J. Brinkmann,et al.  NYU-VAGC: a galaxy catalog based on new public surveys , 2004, astro-ph/0410166.

[17]  J. Frieman,et al.  Cosmology and the Halo Occupation Distribution from Small-Scale Galaxy Clustering in the Sloan Digital Sky Survey , 2004, astro-ph/0408003.

[18]  R. Nichol,et al.  The Bimodal Galaxy Color Distribution: Dependence on Luminosity and Environment , 2004, astro-ph/0406266.

[19]  Padova,et al.  On the environmental dependence of halo formation , 2004, astro-ph/0402237.

[20]  J. Brinkmann,et al.  The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies , 2004, astro-ph/0402030.

[21]  R. Nichol,et al.  Galaxy ecology: groups and low-density environments in the SDSS and 2dFGRS , 2003, astro-ph/0311379.

[22]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[23]  Neta A. Bahcall,et al.  The Dependence on Environment of the Color-Magnitude Relation of Galaxies , 2003, astro-ph/0307336.

[24]  J. Brinkmann,et al.  Relationship between Environment and the Broadband Optical Properties of Galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0310453.

[25]  Bhasker K. Moorthy,et al.  The First Data Release of the Sloan Digital Sky Survey , 2003, astro-ph/0305492.

[26]  F. M. Maley,et al.  An Efficient Targeting Strategy for Multiobject Spectrograph Surveys: the Sloan Digital Sky Survey “Tiling” Algorithm , 2001, astro-ph/0105535.

[27]  R. Nichol,et al.  On Departures from a Power Law in the Galaxy Correlation Function , 2003, astro-ph/0301280.

[28]  D. York,et al.  The Overdensities of Galaxy Environments as a Function of Luminosity and Color , 2002, astro-ph/0212085.

[29]  Ž. Ivezić,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[30]  Christopher J. Miller,et al.  Galaxy Star Formation as a Function of Environment in the Early Data Release of the Sloan Digital Sky Survey , 2002, astro-ph/0210193.

[31]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[32]  Alexander S. Szalay,et al.  Galaxy Clustering in Early Sloan Digital Sky Survey Redshift Data , 2002 .

[33]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: The environmental dependence of galaxy star formation rates near clusters , 2002, astro-ph/0203336.

[34]  M. SubbaRao,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.

[35]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: the dependence of galaxy clustering on luminosity and spectral type , 2001, astro-ph/0112043.

[36]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[37]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[38]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[39]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[40]  et al,et al.  Galaxy Clustering in Early SDSS Redshift Data , 2001, astro-ph/0106476.

[41]  F. M. Maley,et al.  An Efficient Algorithm for Positioning Tiles in the Sloan Digital Sky Survey , 2001, astro-ph/0105535.

[42]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[43]  B. Jain,et al.  How Many Galaxies Fit in a Halo? Constraints on Galaxy Formation Efficiency from Spatial Clustering , 2000, astro-ph/0006319.

[44]  U. Seljak Analytic model for galaxy and dark matter clustering , 2000, astro-ph/0001493.

[45]  Y. Hashimoto,et al.  The Concentration-Density Relation of Galaxies in the Las Campanas Redshift Survey , 1998, astro-ph/9807275.

[46]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[47]  D. Tucker,et al.  The Influence of Environment on the Star Formation Rates of Galaxies , 1997, astro-ph/9712319.

[48]  G. Kauffmann,et al.  Environmental influences on dark matter haloes and consequences for the galaxies within them , 1997, astro-ph/9710125.

[49]  O. Lahav,et al.  The two-point correlation function and morphological segregation in the Optical Redshift Survey , 1996, astro-ph/9608001.

[50]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[51]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[52]  B. Whitmore What determines the morphological fractions in clusters of galaxies , 1993 .

[53]  B. Santiago,et al.  Large-Scale Morphological Segregation in the Center for Astrophysics Redshift Survey , 1992 .

[54]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[55]  M. Postman,et al.  The morphology-density relation - The group connection , 1984 .

[56]  J. Huchra,et al.  Groups of galaxies. III. the CfA survey , 1983 .

[57]  Marc Davis,et al.  A survey of galaxy redshifts. V. The two-point position and velocity correlations. , 1983 .

[58]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[59]  Marc Davis,et al.  Galaxy Correlations as a Function of Morphological Type , 1975 .

[60]  Jr. Oemler Augustus The Systematic Properties of Clusters of Galaxies. Photometry of 15 Clusters , 1974 .

[61]  E. Hubble The Realm of the Nebulæ , 1956, Nature.