Closed-Loop Bidirectional Neuroprosthetic Systems

[1]  Narendra Bhadra,et al.  High frequency sacral root nerve block allows bladder voiding , 2012, Neurourology and urodynamics.

[2]  Reid R. Harrison,et al.  A Versatile Integrated Circuit for the Acquisition of Biopotentials , 2007, 2007 IEEE Custom Integrated Circuits Conference.

[3]  A. Rezai,et al.  Deep Brain Stimulation for Neurological Disorders , 2012, IEEE Reviews in Biomedical Engineering.

[4]  Sheng-Fu Liang,et al.  A Portable Wireless Online Closed-Loop Seizure Controller in Freely Moving Rats , 2011, IEEE Transactions on Instrumentation and Measurement.

[5]  K. Stokes Cardiac pacing electrodes , 1996 .

[6]  Michael A. Suster,et al.  Wireless, Ultra-Low-Power Implantable Sensor for Chronic Bladder Pressure Monitoring , 2012, JETC.

[7]  Theodore W Berger,et al.  A cortical neural prosthesis for restoring and enhancing memory , 2011, Journal of neural engineering.

[8]  C. Kufta,et al.  Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. , 1996, Brain : a journal of neurology.

[9]  You-Yin Chen,et al.  A Programmable Implantable Microstimulator SoC With Wireless Telemetry: Application in Closed-Loop Endocardial Stimulation for Cardiac Pacemaker , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[10]  Miguel A. L. Nicolelis,et al.  Principles of neural ensemble physiology underlying the operation of brain–machine interfaces , 2009, Nature Reviews Neuroscience.

[11]  B. Aouizerate,et al.  Deep brain stimulation of the ventral caudate nucleus in the treatment of obsessive—compulsive disorder and major depression , 2004 .

[12]  M. Elhilali,et al.  Implantable selective stimulator to improve bladder voiding: design and chronic experiments in dogs. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[13]  Peng Cong,et al.  Design and Validation of a Fully Implantable, Chronic, Closed-Loop Neuromodulation Device With Concurrent Sensing and Stimulation , 2012, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[14]  Kofi A. A. Makinwa,et al.  A 1.8 $\mu$ W 60 nV$/\surd$ Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65 nm CMOS for Wireless Sensor Nodes , 2011, IEEE Journal of Solid-State Circuits.

[15]  Hansjörg Scherberger,et al.  Neural control of motor prostheses , 2009, Current Opinion in Neurobiology.

[16]  Nicholas G Hatsopoulos,et al.  The science of neural interface systems. , 2009, Annual review of neuroscience.

[17]  R. R. Harrison,et al.  A low-power low-noise CMOS amplifier for neural recording applications , 2003, IEEE J. Solid State Circuits.

[18]  Sheng-Fu Liang,et al.  A Fully Integrated 8-Channel Closed-Loop Neural-Prosthetic CMOS SoC for Real-Time Epileptic Seizure Control , 2013, IEEE Journal of Solid-State Circuits.

[19]  Jia-Jin Jason Chen,et al.  Wireless implantable biomicrosystem for bladder pressure monitoring and nerve stimulation , 2012, 2012 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[20]  R. Andersen,et al.  Cognitive neural prosthetics. , 2010, Annual review of psychology.

[21]  J. Kalaska,et al.  Learning to Move Machines with the Mind , 2022 .

[22]  Mohamad Sawan,et al.  Implantable Closed-Loop Epilepsy Prosthesis: Modeling, Implementation and Validation , 2012, JETC.

[23]  T.W. Berger,et al.  Restoring lost cognitive function , 2005, IEEE Engineering in Medicine and Biology Magazine.

[24]  M. Sugimachi,et al.  Bionic Cardiology: Exploration Into a Wealth of Controllable Body Parts in the Cardiovascular System , 2009, IEEE Reviews in Biomedical Engineering.

[25]  J. Donoghue,et al.  Sensors for brain-computer interfaces , 2006, IEEE Engineering in Medicine and Biology Magazine.

[26]  C. Wilson,et al.  Multiple site silicon-based probes for chronic recordings in freely moving rats: implantation, recording and histological verification , 2000, Journal of Neuroscience Methods.

[27]  C. Zierhofer,et al.  Electronic design of a cochlear implant for multichannel high-rate pulsatile stimulation strategies , 1995 .

[28]  J. Volkmann DEEP BRAIN STIMULATION II Deep Brain Stimulation for the Treatment of Parkinson’s Disease , 2004 .

[29]  Kevin Fu,et al.  Security and Privacy for Implantable Medical Devices , 2008, IEEE Pervasive Comput..

[30]  Theodore W. Berger,et al.  The Impact of Neurotechnology on Rehabilitation , 2008, IEEE Reviews in Biomedical Engineering.

[31]  Steve J. A. Majerus,et al.  Low-Power Wireless Micromanometer System for Acute and Chronic Bladder-Pressure Monitoring , 2011, IEEE Transactions on Biomedical Engineering.

[32]  M. Sawan Microsystems dedicated to wireless multichannel monitoring and microstimulation: design, test and packaging , 2004, Proceedings. 7th International Conference on Solid-State and Integrated Circuits Technology, 2004..

[33]  Maysam Ghovanloo,et al.  An RFID-Based Closed-Loop Wireless Power Transmission System for Biomedical Applications , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[34]  Naveen Verma,et al.  A Micro-Power EEG Acquisition SoC With Integrated Feature Extraction Processor for a Chronic Seizure Detection System , 2010, IEEE Journal of Solid-State Circuits.

[35]  W. Grill,et al.  Closed-Loop Control of Deep Brain Stimulation: A Simulation Study , 2011, IEEE Transactions on Neural Systems and Rehabilitation Engineering.