Microstructural and nonohmic properties of ZnO.Pr6O11 CoO polycrystalline system

The microstructure and electrical properties of varistors composed of (95-x) ZnO + x Pr 6 O 11 + 5 CoO (ZPC), (x = 0.1, 0.5 and 1.0) and sintered at 1300 and 1350 °C, were investigated. According to X-ray diffraction, several phases (ZnO, Pr 2 O 3 and Pr 2 CoO 4 ) are present when x = 1.0. Using Scanning Electron Microscopy, all of these compositions contain precipitates. These phases are important regarding the development of the microstructure and the electrical properties. The samples with x = 0.1 introduce the best nonohmic behavior (α = 9.0), however when x = 0.5 the electrical properties are highly degraded due to the small quantity of effective barriers. The density of superficial states N IS and donor concentration Nd decreases with Pr 6 O 11 addition. The decrease in the donor concentration is attributed to the annihilation of the donor defects according to the transformation of praseodymium oxides from Pr 6 O 11 to Pr 2 O 3 .

[1]  P. R. Bueno,et al.  Comparison of non-Ohmic accelerated ageing of the ZnO- and SnO2-based voltage dependent resistors , 2009 .

[2]  E. Longo,et al.  Comparative Electrical Behavior at Low and High Current of SnO2‐ and ZnO‐Based Varistors , 2008 .

[3]  E. Longo,et al.  Comparative degradation of ZnO- and SnO2-based polycrystalline non-ohmic devices by current pulse stress , 2008 .

[4]  E. Longo,et al.  SnO2, ZnO and related polycrystalline compound semiconductors: An overview and review on the voltage-dependent resistance (non-ohmic) feature , 2008 .

[5]  J. Varela,et al.  Characterization of ZnO-degraded varistors used in high-tension devices , 2007 .

[6]  E. Longo,et al.  Admittance and dielectric spectroscopy of polycrystalline semiconductors , 2007 .

[7]  E. Longo,et al.  Electrostatic force microscopy as a tool to estimate the number of active potential barriers in dense non-Ohmic polycrystalline SnO2 devices , 2006 .

[8]  P. R. Bueno,et al.  Importance of oxygen atmosphere to recover the ZnO-based varistors properties , 2006 .

[9]  P. R. Bueno,et al.  The failure analyses on ZnO varistors used in high tension devices , 2005 .

[10]  H. Hng,et al.  Microstructure and current-voltage characteristics of praseodymium-doped zinc oxide varistors containing MnO2, Sb2O3 and Co3O4 , 2002 .

[11]  C. Nahm The electrical properties and d.c. degradation characteristics of Dy2O3 doped Pr6O11-based ZnO varistors , 2001 .

[12]  C. Nahm,et al.  Effect of Er2O3 addition on the microstructure, electrical properties, and stability of Pr6O11-based ZnO ceramic varistors , 2001 .

[13]  C. Nahm,et al.  Microstructure, electrical properties, and degradation behavior of praseodymium oxides-based zinc oxide varistors doped with Y2O3 , 2000 .

[14]  T. Tseng,et al.  Microstructure and Crystal Phases of Praseodymium Oxides in Zinc Oxide Varistor Ceramics , 1996 .

[15]  T. Tseng,et al.  Phase identification and electrical properties in ZnO-glass varistors , 1992 .

[16]  A. Alles,et al.  The effect of liquid‐phase sintering on the properties of Pr6O11‐based ZnO varistors , 1991 .

[17]  M. Drofenik Oxygen Partial Pressure and Grain Growth in Donor-Doped BaTiO3 , 1987 .

[18]  M. Tao,et al.  Different ‘‘single grain junctions’’ within a ZnO varistor , 1987 .

[19]  K. Mukae Zinc oxide Varistors with praseodymium oxide , 1987 .

[20]  H. R. Philipp,et al.  Zinc oxide varistors ― a review , 1986 .

[21]  S. Neirman,et al.  Dielectric properties of donor-doped polycrystalline SrTiO3 , 1982 .

[22]  Ikuo Nagasawa,et al.  Capacitance‐vs‐voltage characteristics of ZnO varistors , 1979 .

[23]  D. Clarke The microstructural location of the intergranular metal‐oxide phase in a zinc oxide varistor , 1977 .

[24]  K. Mukae,et al.  Non-Ohmic Properties of ZnO-Rare Earth Metal Oxide-Co3O4 Ceramics , 1977 .

[25]  J. Wurst,et al.  Lineal Intercept Technique for Measuring Grain Size in Two‐Phase Polycrystalline Ceramics , 1972 .

[26]  P. J. Jorgensen Modification of Sintering Kinetics by Solute Segregation in Al2O3 , 1965 .