Semisimplicity of the DS functor for the orthosymplectic Lie superalgebra
暂无分享,去创建一个
[1] R. Weissauer,et al. Cohomological Tensor Functors on Representations of the General Linear Supergroup , 2014, Memoirs of the American Mathematical Society.
[2] The invariant polynomials on simple Lie superalgebras , 1998, math/9810111.
[3] R. Weissauer,et al. On classical tensor categories attached to the irreducible representations of the general linear supergroups $$GL(n\vert n)$$ , 2018, Selecta Mathematica.
[4] Bipartite extension graphs and the Duflo--Serganova functor , 2020, 2010.12817.
[5] Shifra Reif,et al. Grothendieck rings for Lie superalgebras and the Duflo–Serganova functor , 2016, Algebra & Number Theory.
[6] T. Heidersdorf. On Supergroups and their Semisimplified Representation Categories , 2015, Algebras and Representation Theory.
[7] R. Weissauer. Model structures, categorial quotients and representations of super commutative Hopf algebras II, The case Gl(m,n) , 2010, 1010.3217.
[8] V. Serganova. On the Superdimension of an Irreducible Representation of a Basic Classical Lie Superalgebra , 2011 .
[9] T. Heidersdorf,et al. Thick ideals in Deligne's category Re_p(Oδ) , 2017 .
[10] C. Stroppel,et al. Highest weight categories arising from Khovanov's diagram algebra IV: the general linear supergroup , 2009, 0907.2543.
[11] M. Gorelik. Depths and cores in the light of DS-functors , 2020, 2010.05721.
[12] V. Serganova,et al. Bernstein-Gel'fand-Gel'fand reciprocity and indecomposable projective modules for classical algebraic supergroups , 2011, 1111.6959.
[13] C. Stroppel,et al. Nazarov–Wenzl algebras, coideal subalgebras and categorified skew Howe duality , 2013, Advances in Mathematics.
[14] V. Serganova,et al. Cohomology of generalized supergrassmannians and character formulae for basic classical Lie superalgebras , 2009, 0906.0918.
[15] On the category of finite-dimensional representations of OSp$(r|2n)$: Part I , 2017 .
[16] Coideal Subalgebras,et al. NAZAROV-WENZL ALGEBRAS, COIDEAL SUBALGEBRAS AND CATEGORIFIED SKEW HOWE DUALITY , 2013 .