Semisimplicity of the DS functor for the orthosymplectic Lie superalgebra

We prove that the Duflo-Serganova functor $DS_x$ attached to an odd nilpotent element $x$ of $\mathfrak{osp}(m|2n)$ is semisimple, i.e. sends a semisimple representation $M$ of $\mathfrak{osp}(m|2n)$ to a semisimple representation of $\mathfrak{osp}(m-2k|2n-2k)$ where $k$ is the rank of $x$. We prove a closed formula for $DS_x(L(\lambda))$ in terms of the arc diagram attached to $\lambda$.

[1]  R. Weissauer,et al.  Cohomological Tensor Functors on Representations of the General Linear Supergroup , 2014, Memoirs of the American Mathematical Society.

[2]  The invariant polynomials on simple Lie superalgebras , 1998, math/9810111.

[3]  R. Weissauer,et al.  On classical tensor categories attached to the irreducible representations of the general linear supergroups $$GL(n\vert n)$$ , 2018, Selecta Mathematica.

[4]  Bipartite extension graphs and the Duflo--Serganova functor , 2020, 2010.12817.

[5]  Shifra Reif,et al.  Grothendieck rings for Lie superalgebras and the Duflo–Serganova functor , 2016, Algebra & Number Theory.

[6]  T. Heidersdorf On Supergroups and their Semisimplified Representation Categories , 2015, Algebras and Representation Theory.

[7]  R. Weissauer Model structures, categorial quotients and representations of super commutative Hopf algebras II, The case Gl(m,n) , 2010, 1010.3217.

[8]  V. Serganova On the Superdimension of an Irreducible Representation of a Basic Classical Lie Superalgebra , 2011 .

[9]  T. Heidersdorf,et al.  Thick ideals in Deligne's category Re_p(Oδ) , 2017 .

[10]  C. Stroppel,et al.  Highest weight categories arising from Khovanov's diagram algebra IV: the general linear supergroup , 2009, 0907.2543.

[11]  M. Gorelik Depths and cores in the light of DS-functors , 2020, 2010.05721.

[12]  V. Serganova,et al.  Bernstein-Gel'fand-Gel'fand reciprocity and indecomposable projective modules for classical algebraic supergroups , 2011, 1111.6959.

[13]  C. Stroppel,et al.  Nazarov–Wenzl algebras, coideal subalgebras and categorified skew Howe duality , 2013, Advances in Mathematics.

[14]  V. Serganova,et al.  Cohomology of generalized supergrassmannians and character formulae for basic classical Lie superalgebras , 2009, 0906.0918.

[15]  On the category of finite-dimensional representations of OSp$(r|2n)$: Part I , 2017 .

[16]  Coideal Subalgebras,et al.  NAZAROV-WENZL ALGEBRAS, COIDEAL SUBALGEBRAS AND CATEGORIFIED SKEW HOWE DUALITY , 2013 .