Triple Michelson interferometer for a third-generation gravitational wave detector

The upcoming European design study ‘Einstein gravitational-wave Telescope’ represents the first step towards a substantial, international effort for the design of a third-generation interferometric gravitational wave detector. It is generally believed that third-generation instruments might not be installed into existing infrastructures but will provoke a new search for optimal detector sites. Consequently, the detector design could be subject to fewer constraints than the on-going design of the second-generation instruments. In particular, it will be prudent to investigate alternatives to the traditional L-shaped Michelson interferometer. In this paper, we review an old proposal to use three Michelson interferometers in a triangular configuration. We use this example of a triple Michelson interferometer to clarify the terminology and will put this idea into the context of more recent research on interferometer technologies. Furthermore, the benefits of a triangular detector will be used to motivate this design as a good starting point for a more detailed research effort towards a third-generation gravitational-wave detector.

[1]  A. Freise,et al.  Pushing towards the ET sensitivity using 'conventional' technology , 2008, 0810.0604.

[2]  Karsten Danzmann,et al.  Double optical spring enhancement for gravitational wave detectors , 2008, 0805.3096.

[3]  A. Petiteau,et al.  LISACode: A scientific simulator of LISA , 2008, 0802.2023.

[4]  Karsten Danzmann,et al.  Coherent control of broadband vacuum squeezing , 2007, 0704.3796.

[5]  K. Kokeyama,et al.  Demonstration of displacement- and frequency-noise-free laser interferometry using bidirectional Mach-Zehnder interferometers. , 2006, Physical review letters.

[6]  A. Lazzarini,et al.  Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise , 2006, gr-qc/0605002.

[7]  M. M. Casey,et al.  The GEO-HF project , 2006 .

[8]  P. Ajith,et al.  Null-stream veto for two co-located detectors: implementation issues , 2006, gr-qc/0604004.

[9]  K. Kuroda,et al.  The status of LCGT , 2006 .

[10]  K. Kokeyama,et al.  Interferometers for displacement-noise-free gravitational-wave detection. , 2006, Physical review letters.

[11]  X. F. Meng,et al.  Virtual shearing interferometry by digital holography , 2006 .

[12]  S. Danilishin,et al.  Practical design of the optical lever intracavity topology of gravitational-wave detectors , 2006 .

[13]  S. Kawamura,et al.  Displacement- and timing-noise-free gravitational-wave detection. , 2005, Physical review letters.

[14]  M. Planck,et al.  The Confrontation between General Relativity and Experiment , 2006 .

[15]  P. Ajith,et al.  Using the null-stream of GEO 600 to veto transient events in the detector output , 2005 .

[16]  B. Schutz,et al.  Coherent network detection of gravitational waves: the redundancy veto , 2005, gr-qc/0508042.

[17]  M. Vallisneri Geometric time delay interferometry , 2005, gr-qc/0504145.

[18]  Massimo Tinto,et al.  Time delay interferometry , 2003, Living Reviews in Relativity.

[19]  J. Vinet,et al.  Algebraic approach to time-delay data analysis for orbiting LISA , 2004 .

[20]  Daniel Enard,et al.  Status of VIRGO , 2004, SPIE Astronomical Telescopes + Instrumentation.

[21]  S. Larson,et al.  LISA time-delay interferometry zero-signal solution: Geometrical properties , 2004, gr-qc/0405147.

[22]  S. Kawamura,et al.  Displacement-noise-free gravitational-wave detection. , 2004, Physical review letters.

[23]  Joshua R. Smith,et al.  The status of GEO 600 , 2004, SPIE Astronomical Telescopes + Instrumentation.

[24]  Takayuki Tomaru,et al.  Design and construction status of CLIO , 2003 .

[25]  Vincent Loriette,et al.  Virtual gravitational wave interferometers with actual mirrors , 2003 .

[26]  Yanbei Chen Sagnac interferometer as a speed-meter-type, quantum-nondemolition gravitational-wave detector , 2002, gr-qc/0208051.

[27]  K. Arai Status of TAMA300 , 2002 .

[28]  Daniel Sigg,et al.  Commissioning of the LIGO detectors , 2002 .

[29]  C. Will The Confrontation between General Relativity and Experiment , 2001, Living reviews in relativity.

[30]  A. Buonanno,et al.  Quantum noise in second generation, signal recycled laser interferometric gravitational wave detectors , 2001, gr-qc/0102012.

[31]  J. Armstrong,et al.  Discriminating a gravitational wave background from instrumental noise in the LISA detector , 2000 .

[32]  Grigorii B. Malykin,et al.  The Sagnac effect: correct and incorrect explanations , 2000 .

[33]  C. Winstein,et al.  Human Gravity-Gradient Noise in Interferometric Gravitational-Wave Detectors , 1998, gr-qc/9810016.

[34]  K. Thorne,et al.  Seismic gravity-gradient noise in interferometric gravitational-wave detectors , 1998, gr-qc/9806018.

[35]  B. Schutz,et al.  Data analysis of gravitational-wave signals from spinning neutron stars. I. The signal and its detection , 1998, gr-qc/9804014.

[36]  N. Andersson,et al.  Towards gravitational wave asteroseismology , 1997, gr-qc/9711088.

[37]  C. Cutler Angular resolution of the LISA gravitational wave detector , 1997, gr-qc/9703068.

[38]  Frequency response of Michelson- and Sagnac-based interferometers , 1997 .

[39]  Gustafson,et al.  Sagnac interferometer for gravitational-wave detection. , 1996, Physical review letters.

[40]  M. Tinto,et al.  Near optimal solution to the inverse problem for gravitational-wave bursts. , 1989, Physical review. D, Particles and fields.

[41]  A. Rüdiger,et al.  Plans for a large gravitational wave antenna in Germany , 1985 .