Mixed Discontinuous Galerkin Finite Element Method for the Biharmonic Equation

In this paper, we first split the biharmonic equation Δ2u=f with nonhomogeneous essential boundary conditions into a system of two second order equations by introducing an auxiliary variable v=Δu and then apply an hp-mixed discontinuous Galerkin method to the resulting system. The unknown approximation vh of v can easily be eliminated to reduce the discrete problem to a Schur complement system in uh, which is an approximation of u. A direct approximation vh of v can be obtained from the approximation uh of u. Using piecewise polynomials of degree p≥3, a priori error estimates of u−uh in the broken H1 norm as well as in L2 norm which are optimal in h and suboptimal in p are derived. Moreover, a priori error bound for v−vh in L2 norm which is suboptimal in h and p is also discussed. When p=2, the preset method also converges, but with suboptimal convergence rate. Finally, numerical experiments are presented to illustrate the theoretical results.

[1]  Reinhard Scholz A mixed method for 4th order problems using linear finite elements , 1978 .

[2]  R. Glowinski,et al.  Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem , 1977 .

[3]  Ilaria Perugia,et al.  Superconvergence of the Local Discontinuous Galerkin Method for Elliptic Problems on Cartesian Grids , 2001, SIAM J. Numer. Anal..

[4]  Susanne C. Brenner,et al.  C0 Interior Penalty Methods for Fourth Order Elliptic Boundary Value Problems on Polygonal Domains , 2005, J. Sci. Comput..

[5]  Janine R. Wedel Part I: Overview , 2001 .

[6]  Ilaria Perugia,et al.  An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems , 2000, SIAM J. Numer. Anal..

[7]  E. Süli,et al.  Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems I: the scalar case , 2005 .

[8]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[9]  Igor Mozolevski,et al.  hp-version interior penalty DGFEMs for the biharmonic equation , 2007 .

[10]  Thirupathi Gudi,et al.  Discontinuous Galerkin Methods for Quasi-Linear Elliptic Problems of Nonmonotone Type , 2007, SIAM J. Numer. Anal..

[11]  Mary F. Wheeler,et al.  A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[12]  Peter Monk,et al.  A mixed finite element method for the biharmonic equation , 1987 .

[13]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[14]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[15]  Igor Mozolevski,et al.  A Priori Error Analysis for the hp-Version of the Discontinuous Galerkin Finite Element Method for the Biharmonic Equation , 2003 .

[16]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[17]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[18]  Igor Mozolevski,et al.  hp-Version a priori Error Analysis of Interior Penalty Discontinuous Galerkin Finite Element Approximations to the Biharmonic Equation , 2007, J. Sci. Comput..

[19]  D. Arnold,et al.  Discontinuous Galerkin Methods for Elliptic Problems , 2000 .

[20]  Tongke Wang,et al.  A mixed finite volume element method based on rectangular mesh for biharmonic equations , 2004 .

[21]  G. A. Baker Finite element methods for elliptic equations using nonconforming elements , 1977 .

[22]  Philippe G. Ciarlet,et al.  A Mixed Finite Element Method for the Biharmonic Equation , 1974 .

[23]  Richard S. Falk Approximation of the Biharmonic Equation by a Mixed Finite Element Method , 1978 .

[24]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[25]  George Em Karniadakis,et al.  The Development of Discontinuous Galerkin Methods , 2000 .

[26]  Monique Dauge,et al.  Polynomials in the Sobolev World , 2007 .

[27]  T. Hughes,et al.  Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity , 2002 .