An Object-oriented Interpretation of the EAT System

Abstract.In a previous paper we characterized, in the Category Theory setting, a class of implementations of Abstract Data Types, which has been suggested by the way of programming in the EAT system. (EAT, Effective Algebraic Topology, is one of Sergeraert’s systems for effective homology and homotopy computation.) This characterization was established using classical tools, in an unrelated way to the current mainstream topics in the field of Algebraic Specifications. Looking for a connection with these topics, we have found, rather unexpectedly, that our approach is related to some object-oriented formalisms, namely hidden specifications and the coalgebraic view. In this paper, we explore these relations making explicit the implicit object-oriented features of the EAT system and generalizing the data structure analysis we had previously done.

[1]  Vico Pascual,et al.  Specifying implementations , 1999, ISSAC '99.

[2]  Michael Barr,et al.  Terminal Coalgebras in Well-Founded Set Theory , 1993, Theor. Comput. Sci..

[3]  Lawrence Charles Paulson,et al.  ML for the working programmer , 1991 .

[4]  Răzvan Diaconescu,et al.  Hiding and behaviour: an institutional approach , 1994 .

[5]  Paul Graham ANSI Common Lisp , 1995 .

[6]  César Domínguez,et al.  Modeling inheritance as coercion in a symbolic computation system , 2001, ISSAC '01.

[7]  Hartmut Ehrig,et al.  Formal specification , 2001 .

[8]  Mitchell Wand,et al.  Final Algebra Semantics and Data Type Extensions , 1979, J. Comput. Syst. Sci..

[9]  Corina Cîrstea,et al.  Coalgebra semantics for hidden algebra: Parameterised objects an inheritance , 1997, WADT.

[10]  Francis Sergeraert,et al.  The Computability Problem in Algebraic Topology , 1994 .

[11]  Yves Diers Familles universelles de morphismes , 1978 .

[12]  Joseph A. Goguen,et al.  Towards an Algebraic Semantics for the Object Paradigm , 1992, COMPASS/ADT.

[13]  Donald Sannella,et al.  On Observational Equivalence and Algebraic Specification , 1987, J. Comput. Syst. Sci..

[14]  María Vico Pascual Martínez-Losa Objetos localmente efectivos y tipos abstractos de datos , 2002 .

[15]  John C. Mitchell,et al.  Abstract types have existential type , 1988, TOPL.

[16]  Richard D. Jenks,et al.  AXIOM: the scientific computation system , 1992 .

[17]  Hans-Dieter Ehrich,et al.  Specification of abstract data types , 1996 .

[18]  C. A. R. Hoare,et al.  Proof of correctness of data representations , 1972, Acta Informatica.

[19]  Corina Cı̂rstea Semantic constructions for the specification of objects , 2001, Theor. Comput. Sci..

[20]  Douglas R. Smith Designware: Software Development by Refinement , 1999, CTCS.

[21]  Vangalur S. Alagar,et al.  Specification of Software Systems , 1998, Graduate Texts in Computer Science.

[22]  Joseph A. Goguen,et al.  Types as theories , 1991 .

[23]  Bart Jacobs,et al.  Mongruences and Cofree Coalgebras , 1995, AMAST.

[24]  José Meseguer,et al.  Universal Realization, Persistent Interconnection and Implementation of Abstract Modules , 1982, ICALP.

[25]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[26]  Guy L. Steele,et al.  Common Lisp the Language , 1984 .

[27]  Egon Börger Specification and validation methods , 1995 .

[28]  Julio Rubio,et al.  Locally effective objects and algebraic topology , 1993 .

[29]  César Domínguez,et al.  Hidden Specification of a Functional System , 2001, EUROCAST.

[30]  Fernando Orejas,et al.  Initial Behaviour Semantics for Algebraic Specifications , 1988, ADT.

[31]  C. A. R. Hoare,et al.  Proof of Correctness of Data Representations (Reprint) , 2002, Software Pioneers.

[32]  Horst Reichel,et al.  An approach to object semantics based on terminal co-algebras , 1995, Mathematical Structures in Computer Science.

[33]  Martín Abadi,et al.  A Theory of Objects , 1996, Monographs in Computer Science.

[34]  Ugo Montanari,et al.  Observability Concepts in Abstract Data Type Specifications , 1976, MFCS.

[35]  Joseph A. Goguen,et al.  Some Fundamental Algebraic Tools for the Semantics of Computation: Part 3: Indexed Categories , 1991, Theor. Comput. Sci..

[36]  Hartmut Ehrig,et al.  Semantical Constructions for Categories of Behavioural Specifications , 1988, Categorial Methods in Computer Science.

[37]  Rolf Hennicker,et al.  Observational Implementations , 1989, STACS.

[38]  Grant Malcolm,et al.  Behavioural Equivalence, Bisimulation, and Minimal Realisation , 1995, COMPASS/ADT.

[39]  María Vico Pascual Martínez Losa Objetos localmente efectivos y tipos abstractos de datos , 2002 .

[40]  Luca Cardelli,et al.  A Semantics of Multiple Inheritance , 1984, Information and Computation.

[41]  Hartmut Ehrig,et al.  Fundamentals of Algebraic Specification 2: Module Specifications and Constraints , 1990 .

[42]  John C. Mitchell,et al.  Abstract types have existential types , 1985, POPL.

[43]  Joseph A. Goguen,et al.  A hidden agenda , 2000, Theor. Comput. Sci..

[44]  Hartmut Ehrig,et al.  Fundamentals of Algebraic Specification 1 , 1985, EATCS Monographs on Theoretical Computer Science.

[45]  Fernando Orejas,et al.  Implementation and Behavioural Equivalence: A Survey , 1991, COMPASS/ADT.

[46]  William R. Cook,et al.  Object-Oriented Programming Versus Abstract Data Types , 1990, REX Workshop.

[47]  Peter Wegner,et al.  Concepts and paradigms of object-oriented programming , 1990, OOPS.

[48]  A. W. Roscoe,et al.  Topology and category theory in computer science , 1991 .

[49]  Luca Cardelli,et al.  Operations on Records , 1989, Mathematical Foundations of Programming Semantics.

[50]  Julio Rubio-Garcia Homologie effective des espaces de lacets itérés : un logiciel , 1991 .