Generalized Forecast Errors, A Change of Measure, and Forecast Optimality

This paper establishes properties of optimal forecasts under general loss functions, extending existing results obtained under speci…c functional forms and data generating processes. We propose a new method that changes the probability measure under which the well-known properties of optimal forecasts under mean squared error loss can be recovered. We illustrate the proposed methods through an empirical application to U.S. in‡ation forecasting.

[1]  Andrew J. Patton,et al.  Testing Forecast Optimality Under Unknown Loss , 2007 .

[2]  M. Hashem Pesaran,et al.  Decision‐Based Methods for Forecast Evaluation , 2007 .

[3]  Andrew J. Patton,et al.  Properties of Optimal Forecasts under Asymmetric Loss and Nonlinearity , 2007 .

[4]  C. Granger,et al.  Handbook of Economic Forecasting , 2006 .

[5]  Andrew J. Patton Volatility Forecast Comparison Using Imperfect Volatility Proxies , 2006 .

[6]  C. Granger,et al.  Forecasting and Decision Theory , 2006 .

[7]  F. Diebold,et al.  VOLATILITY AND CORRELATION FORECASTING , 2006 .

[8]  Allan Timmermann,et al.  Estimation and Testing of Forecast Rationality under Flexible Loss , 2005 .

[9]  Allan Timmermann,et al.  Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss? , 2008 .

[10]  Michael P. Clements,et al.  A companion to economic forecasting , 2004 .

[11]  Robert F. Engle,et al.  Risk and Volatility: Econometric Models and Financial Practice , 2004 .

[12]  P. Hansen,et al.  Consistent Ranking of Volatility Models , 2004 .

[13]  Peter Christoffersen,et al.  Série Scientifique Scientific Series the Importance of the Loss Function in Option Valuation the Importance of the Loss Function in Option Valuation , 2022 .

[14]  Clive W. J. Granger,et al.  Outline of forecast theory using generalized cost functions , 1999 .

[15]  Xiaotong Shen,et al.  Sieve extremum estimates for weakly dependent data , 1998 .

[16]  Herman J. Bierens,et al.  Asymptotic Theory of Integrated Conditional Moment Tests , 1997 .

[17]  F. Diebold,et al.  Optimal Prediction Under Asymmetric Loss , 1994, Econometric Theory.

[18]  David I. Harvey The evaluation of economic forecasts , 1997 .

[19]  F. Diebold,et al.  Further results on forecasting and model selection under asymmetric loss , 1996 .

[20]  Robert M. de Jong,et al.  THE BIERENS TEST UNDER DATA DEPENDENCE , 1996 .

[21]  K. West,et al.  Asymptotic Inference about Predictive Ability , 1996 .

[22]  R. Engle Statistical Models for Financial Volatility , 1993 .

[23]  D. Andrews Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Models , 1991 .

[24]  P. Burridge,et al.  A Very Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix , 1991 .

[25]  Meteor showers or heat waves , 1990 .

[26]  Herman J. Bierens,et al.  A consistent conditional moment test of functional form , 1990 .

[27]  Robert F. Engle,et al.  Meteor Showers or Heat Waves? Heteroskedastic Intra-Daily Volatility in the Foreign Exchange Market , 1988 .

[28]  Anil K. Bera,et al.  A test for normality of observations and regression residuals , 1987 .

[29]  Russell P. Robins,et al.  Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model , 1987 .

[30]  A. Gallant,et al.  Semi-nonparametric Maximum Likelihood Estimation , 1987 .

[31]  Andrew Chesher,et al.  Residual analysis in the grouped and censored normal linear model , 1987 .

[32]  A. Zellner Bayesian Estimation and Prediction Using Asymmetric Loss Functions , 1986 .

[33]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[34]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[35]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[36]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[37]  K. West,et al.  FORECAST EVALUATION , 2022 .