The effect of yttrium on cathodic arc evaporated Ti0.45Al0.55N coating

[1]  V. Strel’nitskij,et al.  Structure and properties of Ti–Al–Y–N coatings deposited from filtered vacuum-arc plasma , 2011 .

[2]  D. Pai,et al.  Performance evaluation of TiAlCrYN nanocomposite coatings deposited using four-cathode reactive unbalanced pulsed direct current magnetron sputtering system , 2010 .

[3]  Yong Du,et al.  Compositional and structural evolution of sputtered Ti-Al-N , 2009 .

[4]  Kenji Yamamoto,et al.  Effect of alloying element (Si,Y) on properties of AIP deposited (Ti,Cr,Al)N coating , 2008 .

[5]  P. Mayrhofer,et al.  Influence of bipolar pulsed DC magnetron sputtering on elemental composition and micro-structure of Ti–Al–Y–N thin films , 2008 .

[6]  P. Mayrhofer,et al.  Yttrium-induced structural changes in sputtered Ti1−xAlxN thin films , 2007 .

[7]  I. Fried,et al.  Thermal stability of nanostructured superhard coatings: A review , 2007 .

[8]  C. Mitterer,et al.  Structure, mechanical and tribological properties of sputtered Ti1–xAlxN coatings with 0.5≤x≤0.75 , 2005 .

[9]  D. B. Lewis,et al.  TiAlN based nanoscale multilayer coatings designed to adapt their tribological properties at elevated temperatures , 2005 .

[10]  M. Odén,et al.  Mechanical properties and machining performance of Ti1−xAlxN-coated cutting tools , 2005 .

[11]  Arnold C. Vermeulen,et al.  Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction , 2005 .

[12]  Linchun Wang,et al.  Effects of yttrium on microstructure, mechanical properties and high-temperature wear behavior of cast Stellite 6 alloy , 2003 .

[13]  S. Deevi,et al.  Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review , 2003 .

[14]  D. B. Lewis,et al.  Novel coating systems produced by the combined cathodic arc/unbalanced magnetron sputtering for environmental protection of titanium alloys , 2002 .

[15]  D. B. Lewis,et al.  Joint Second Prize Significance of Y and Cr in TiAlN Hard Coatings for Dry High Speed Cutting , 2001 .

[16]  A. Kimura,et al.  Effects of Al content on hardness, lattice parameter and microstructure of Ti1-xAlxN films , 1999 .

[17]  D. B. Lewis,et al.  The influence of low concentrations of chromium and yttrium on the oxidation behaviour, residual stress and corrosion performance of TiAlN hard coatings on steel substrates , 1999 .

[18]  Pierre Voumard,et al.  Influence of incorporation of Cr and Y on the wear performance of TiAlN coatings at elevated temperatures , 1999 .

[19]  D. B. Lewis,et al.  The influence of the yttrium content on the structure and properties of Ti1−x−y−zAlxCryYzN PVD hard coatings , 1999 .

[20]  Y. Makino,et al.  Phase transition and properties of Ti-Al-N thin films prepared by r.f.-plasma assisted magnetron sputtering , 1999 .

[21]  Ivan Petrov,et al.  Microstructure and oxidation-resistance of Ti1 − x − y −zAlxCryYzN layers grown by combined steered-arc/unbalanced-magnetron-sputter deposition , 1997 .

[22]  B. Pint Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect , 1996 .

[23]  K. Ishizaki Phase diagrams under high total gas pressures—Ellingham diagrams for hot isostatic press processes , 1990 .

[24]  J. Stringer,et al.  Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.