Improvement of remote sensing multispectral image classification by using Independent Component Analysis

This paper deals with the application of Independent Component Analysis (ICA) as a solution to Blind Source Separation (BSS), in order to pre-process remote sensing multispectral images before we classify them. We analyze the structure of the considered data, and especially show that each recorded image corresponding to a spectral band may be seen as an observation consisting of a mixture (linear combination) of source images. The latter images correspond to the abundances of the pure elements (endmembers) in the pixels. Using BSS methods, one can hope to reduce the mixing effect in these observations, which then allows better recognition of the classes constituting the observed scene. Based on this approach, we create new images (i.e. at least partly separated images) by using ICA, starting from HRV SPOT images. These images are then used as inputs of a supervised classifier integrating textural information. The separated image classification results show a clear improvement compared to classification of initial images. This show the contribution of ICA as an attractive pre-processing for classification of multispectral remote sensing imagery.

[1]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[2]  Aapo Hyvärinen,et al.  A Fast Fixed-Point Algorithm for Independent Component Analysis , 1997, Neural Computation.

[3]  J. Cardoso,et al.  Blind beamforming for non-gaussian signals , 1993 .

[4]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[5]  Eric Moulines,et al.  A blind source separation technique using second-order statistics , 1997, IEEE Trans. Signal Process..

[6]  Ali Mansour,et al.  Blind Separation of Sources , 1999 .

[7]  Abdelmounaime Safia,et al.  La transformation en ondelettes pour l'extraction de la texture‐couleur. Application à la classification combinée des images (HRV) de SPOT , 2006 .

[8]  Jean-Francois Cardoso,et al.  Blind signal separation: statistical principles , 1998, Proc. IEEE.

[9]  D. Chakrabarti,et al.  A fast fixed - point algorithm for independent component analysis , 1997 .

[10]  Christian Jutten,et al.  Detection de grandeurs primitives dans un message composite par une architecture de calcul neuromime , 1985 .

[11]  John F. Mustard,et al.  Spectral unmixing , 2002, IEEE Signal Process. Mag..

[12]  P. Comon Independent Component Analysis , 1992 .

[13]  G. Darmois,et al.  Analyse générale des liaisons stochastiques: etude particulière de l'analyse factorielle linéaire , 1953 .

[14]  Christian Jutten,et al.  Space or time adaptive signal processing by neural network models , 1987 .