Towards manufacturing robotics accuracy degradation assessment: A vision-based data-driven implementation

[1]  A. E. Conrady Decentred Lens-Systems , 1919 .

[2]  Klaus Schulten,et al.  Implementation of self-organizing neural networks for visuo-motor control of an industrial robot , 1993, IEEE Trans. Neural Networks.

[3]  B. Bhushan,et al.  Introduction to Tribology , 2002 .

[4]  B. Samanta,et al.  Prognostics of machine condition using soft computing , 2008 .

[5]  Torgny Brogårdh,et al.  An extended friction model to capture load and temperature effects in robot joints , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Roque Alfredo Osornio-Rios,et al.  FPGA-Based Fused Smart Sensor for Dynamic and Vibration Parameter Extraction in Industrial Robot Links , 2010, Sensors.

[7]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[8]  Ming J. Tsai,et al.  Machine vision based path planning for a robotic golf club head welding system , 2011 .

[9]  A. C. Bittencourt,et al.  Static Friction in a Robot Joint—Modeling and Identification of Load and Temperature Effects , 2012 .

[10]  Andrew Y. C. Nee,et al.  Interactive robot trajectory planning and simulation using Augmented Reality , 2012 .

[11]  George Chryssolouris,et al.  Robot Path Correction Using Stereo Vision System , 2012 .

[12]  Sotiris Makris,et al.  Vision System for Robotic Handling of Randomly Placed Objects , 2013 .

[13]  Jun Hang Jianzhong Zhang Ming Cheng Overview of Fault Diagnosis Theory and Method for Permanent Magnet Machine , 2015 .

[14]  Yanling Xu,et al.  Computer vision technology for seam tracking in robotic GTAW and GMAW , 2015 .

[15]  Antonio Visioli,et al.  Friction modeling with temperature effects for industrial robot manipulators , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[16]  Gérard-André Capolino,et al.  Advances in Electrical Machine, Power Electronic, and Drive Condition Monitoring and Fault Detection: State of the Art , 2015, IEEE Transactions on Industrial Electronics.

[17]  Guixiu Qiao,et al.  Advancing Measurement Science to Assess Monitoring, Diagnostics, and Prognostics for Manufacturing Robotics. , 2016, International journal of prognostics and health management.

[18]  Francisco José Madrid-Cuevas,et al.  Generation of fiducial marker dictionaries using Mixed Integer Linear Programming , 2016, Pattern Recognit..

[19]  Alaa Abdulhady Jaber Design of an Intelligent Embedded System for Condition Monitoring of an Industrial Robot , 2016 .

[20]  Aitor Arnaiz,et al.  Motor current signature analysis for gearbox condition monitoring under transient speeds using wavelet analysis and dual-level time synchronous averaging , 2017 .

[21]  Wei Tian,et al.  An error-similarity-based robot positional accuracy improvement method for a robotic drilling and riveting system , 2017 .

[22]  George Michalos,et al.  A Machine Learning Approach for Visual Recognition of Complex Parts in Robotic Manipulation , 2017 .

[23]  Anas Sakout,et al.  Gearbox condition monitoring in wind turbines: A review , 2018, Mechanical Systems and Signal Processing.

[24]  Brian A. Weiss,et al.  Monitoring, Diagnostics, and Prognostics for Robot Tool Center Accuracy Degradation , 2018 .

[25]  Guixiu Qiao,et al.  Quick health assessment for industrial robot health degradation and the supporting advanced sensing development. , 2018, Journal of manufacturing systems.

[26]  Martin Karlsson,et al.  Robot Condition Monitoring and Production Simulation , 2018 .

[27]  Sotiris Makris,et al.  An approach for implementing power and force limiting in sensorless industrial robots , 2018 .

[28]  Rafael Muñoz-Salinas,et al.  Speeded up detection of squared fiducial markers , 2018, Image Vis. Comput..

[29]  Sotiris Makris,et al.  Towards seamless human robot collaboration: integrating multimodal interaction , 2019, The International Journal of Advanced Manufacturing Technology.

[30]  K. Georgoulias,et al.  Methodology for enabling Digital Twin using advanced physics-based modelling in predictive maintenance , 2019, Procedia CIRP.

[31]  George Chryssolouris,et al.  The use of Digital Twin for predictive maintenance in manufacturing , 2019, Int. J. Comput. Integr. Manuf..

[32]  Zhang Shilei,et al.  A virtual-physical collision detection interface for AR-based interactive teaching of robot , 2020, Robotics Comput. Integr. Manuf..

[33]  Yongli Wei,et al.  A hybrid predictive maintenance approach for CNC machine tool driven by Digital Twin , 2020, Robotics Comput. Integr. Manuf..