Towards an Information Theoretic Framework for Genetic Programming
暂无分享,去创建一个
[1] Nicholas J. Radcliffe,et al. Genetic Set Recombination , 1992, FOGA.
[2] Sameer H. Al-Sakran,et al. Cross-domain features of runs of genetic programming used to evolve designs for analog circuits, optical lens systems, controllers, antennas, mechanical systems, and quantum computing circuits , 2005, 2005 NASA/DoD Conference on Evolvable Hardware (EH'05).
[3] Julien Clinton Sprott,et al. Algebraically Simple Chaotic Flows , 2000 .
[4] Lee Altenberg,et al. The Schema Theorem and Price's Theorem , 1994, FOGA.
[5] Jason M. Daida,et al. Towards identifying populations that increase the likelihood of success in genetic programming , 2005, GECCO '05.
[6] Xin Yao,et al. Evolving a cooperative population of neural networks by minimizing mutual information , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).
[7] Bin Ma,et al. The similarity metric , 2001, IEEE Transactions on Information Theory.
[8] Julien Clinton Sprott,et al. Simplest dissipative chaotic flow , 1997 .
[9] Gal Chechik,et al. An Information Theoretic Approach to the Study of Auditory Coding , 2003 .
[10] Deniz Erdogmus,et al. Information Theoretic Learning , 2005, Encyclopedia of Artificial Intelligence.
[11] P. Deignan,et al. The MI-RBFN: mapping for generalization , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).
[12] Chilukuri K. Mohan,et al. Information theoretic indicators of fitness, relevant diversity & pairing potential in genetic programming , 2005, 2005 IEEE Congress on Evolutionary Computation.
[13] Carlos A. Coello Coello,et al. Mutual information-based fitness functions for evolutionary circuit synthesis , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).
[14] George D. Smith,et al. Evolutionary Feature Construction Using Information Gain and Gini Index , 2004, EuroGP.