Towards an Information Theoretic Framework for Genetic Programming

[1]  Nicholas J. Radcliffe,et al.  Genetic Set Recombination , 1992, FOGA.

[2]  Sameer H. Al-Sakran,et al.  Cross-domain features of runs of genetic programming used to evolve designs for analog circuits, optical lens systems, controllers, antennas, mechanical systems, and quantum computing circuits , 2005, 2005 NASA/DoD Conference on Evolvable Hardware (EH'05).

[3]  Julien Clinton Sprott,et al.  Algebraically Simple Chaotic Flows , 2000 .

[4]  Lee Altenberg,et al.  The Schema Theorem and Price's Theorem , 1994, FOGA.

[5]  Jason M. Daida,et al.  Towards identifying populations that increase the likelihood of success in genetic programming , 2005, GECCO '05.

[6]  Xin Yao,et al.  Evolving a cooperative population of neural networks by minimizing mutual information , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[7]  Bin Ma,et al.  The similarity metric , 2001, IEEE Transactions on Information Theory.

[8]  Julien Clinton Sprott,et al.  Simplest dissipative chaotic flow , 1997 .

[9]  Gal Chechik,et al.  An Information Theoretic Approach to the Study of Auditory Coding , 2003 .

[10]  Deniz Erdogmus,et al.  Information Theoretic Learning , 2005, Encyclopedia of Artificial Intelligence.

[11]  P. Deignan,et al.  The MI-RBFN: mapping for generalization , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[12]  Chilukuri K. Mohan,et al.  Information theoretic indicators of fitness, relevant diversity & pairing potential in genetic programming , 2005, 2005 IEEE Congress on Evolutionary Computation.

[13]  Carlos A. Coello Coello,et al.  Mutual information-based fitness functions for evolutionary circuit synthesis , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[14]  George D. Smith,et al.  Evolutionary Feature Construction Using Information Gain and Gini Index , 2004, EuroGP.