Transversality and lattice surgery: Exploring realistic routes toward coupled logical qubits with trapped-ion quantum processors

Active quantum error correction has been identified as a crucial ingredient of future quantum computers, motivating the recent experimental efforts to encode logical quantum bits using small topological codes. In addition to the demonstration of the beneficial role of the encoding, a break-even point in the progress towards large-scale quantum computers will be the implementation of a universal set of gates. This mid-term challenge will soon be faced by various quantum technologies, which urges the need of realistic assessments of their prospects. In this work, we pursue this goal by assessing the capability of current trapped-ion architectures in facing one of the most demanding parts of this quest: the implementation of an entangling CNOT gate between encoded logical qubits. We present a detailed comparative study of two alternative strategies for trapped-ion topological color codes, either a transversal or a lattice-surgery approach, characterized by a detailed microscopic modeling of both current technological capabilities and experimental sources of noise afflicting the different operations. Our careful fault-tolerant design, together with a low-resource optimization, allows us to determine via exhaustive numerical simulations the experimental regimes where each of the approaches becomes favorable. We hope that our study thereby contributes to guiding the future development of trapped-ion quantum computers.

[1]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[2]  Kenneth R. Brown,et al.  Errors and pseudothresholds for incoherent and coherent noise , 2016, 1605.03604.

[3]  J Mizrahi,et al.  Ultrafast gates for single atomic qubits. , 2010, Physical review letters.

[4]  Daniel Nigg,et al.  Compiling quantum algorithms for architectures with multi-qubit gates , 2016, 1601.06819.

[5]  David Gosset,et al.  Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates. , 2016, Physical review letters.

[6]  Nicolai Friis,et al.  Fault-tolerant interface between quantum memories and quantum processors , 2016, Nature Communications.

[7]  Andrew Steane,et al.  Active Stabilization, Quantum Computation, and Quantum State Synthesis , 1997 .

[8]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[9]  John Preskill,et al.  Topological quantum memory aÖ , 2003 .

[10]  Kenneth R. Brown,et al.  Comparison of a quantum error correction threshold for exact and approximate errors , 2014, 1501.00068.

[11]  Panos Aliferis,et al.  Effective fault-tolerant quantum computation with slow measurements. , 2007, Physical review letters.

[12]  Andrew Steane,et al.  Fast quantum logic gates with trapped-ion qubits , 2017, Nature.

[13]  Daniel Nigg,et al.  Experimental Repetitive Quantum Error Correction , 2011, Science.

[14]  Daniel Nigg,et al.  A quantum information processor with trapped ions , 2013, 1308.3096.

[15]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[16]  C. Luchini,et al.  [High speed]. , 1969, Revista De La Escuela De Odontologia, Universidad Nacional De Tucuman, Facultad De Medicina.

[17]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[18]  N. Linke,et al.  High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. , 2015, Physical review letters.

[19]  Tommaso Calarco,et al.  Quantum computing implementations with neutral particles , 2011, Quantum Inf. Process..

[20]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[21]  T. R. Tan,et al.  Coherent diabatic ion transport and separation in a multizone trap array. , 2012, Physical review letters.

[22]  T. R. Tan,et al.  High-Fidelity Universal Gate Set for ^{9}Be^{+} Ion Qubits. , 2016, Physical review letters.

[23]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[24]  Christian F. Roos,et al.  Ion trap quantum gates with amplitude-modulated laser beams , 2007, 0710.1204.

[25]  Dorit Aharonov,et al.  Fault-tolerant Quantum Computation with Constant Error Rate * , 1999 .

[26]  Krysta Marie Svore,et al.  Low-distance Surface Codes under Realistic Quantum Noise , 2014, ArXiv.

[27]  Jim Euchner Design , 2014, Catalysis from A to Z.

[28]  David J. Wineland,et al.  Complete Methods Set for Scalable Ion Trap Quantum Information Processing , 2009, Science.

[29]  Andrew J. Landahl,et al.  Fault-tolerant quantum computing with color codes , 2011, 1108.5738.

[30]  Klaus Molmer,et al.  Multiparticle Entanglement of Hot Trapped Ions , 1998, quant-ph/9810040.

[31]  D. Matsukevich,et al.  Entanglement of single-atom quantum bits at a distance , 2007, Nature.

[32]  Wolfgang Lange,et al.  Quantum Computing with Trapped Ions , 2009, Encyclopedia of Complexity and Systems Science.

[33]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[34]  F. Schmidt-Kaler,et al.  Entanglement-based dc magnetometry with separated ions , 2017, 1704.01793.

[35]  J. Hughes,et al.  Transport of Quantum States and Separation of Ions in a Dual Rf Ion Trap * , 2002 .

[36]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[37]  H. Bombin,et al.  Dimensional Jump in Quantum Error Correction , 2014, 1412.5079.

[38]  Daniel Litinski,et al.  Braiding by Majorana tracking and long-range CNOT gates with color codes , 2017, 1708.05012.

[39]  N. Linke,et al.  High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. , 2014, Physical review letters.

[40]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[41]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[42]  Rui Chao,et al.  Quantum Error Correction with Only Two Extra Qubits. , 2017, Physical review letters.

[43]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[44]  C. F. Roos,et al.  Optimal control of entangling operations for trapped-ion quantum computing , 2008, 0809.1414.

[45]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[46]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[47]  Erik Nielsen,et al.  Robust, self-consistent, closed-form tomography of quantum logic gates on a trapped ion qubit , 2013, 1310.4492.

[48]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[49]  A. Walther,et al.  Experimental realization of fast ion separation in segmented Paul traps , 2014 .

[50]  Kenneth R. Brown,et al.  Comparison of ancilla preparation and measurement procedures for the Steane ((7,1,3)) code on a model ion-trap quantum computer , 2013 .

[51]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[52]  Kenneth R. Brown,et al.  Heating rates and ion-motion control in a Y-junction surface-electrode trap , 2014 .

[53]  D. Stick,et al.  Design, fabrication and experimental demonstration of junction surface ion traps , 2011 .

[54]  Simon J. Devitt,et al.  Blueprint for a microwave trapped ion quantum computer , 2015, Science Advances.

[55]  Yasunobu Nakamura,et al.  Quantum computers , 2010, Nature.

[56]  Helmut G Katzgraber,et al.  Error threshold for color codes and random three-body Ising models. , 2009, Physical review letters.

[57]  Christopher Chamberland,et al.  FLAG FAULT-TOLERANT ERROR CORRECTION WITH ARBITRARY DISTANCE CODES , 2017, 1708.02246.

[58]  Ulrich G. Poschinger,et al.  Fast ion swapping for quantum-information processing , 2016, 1607.03734.

[59]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[60]  Simon J Devitt,et al.  Simulating open quantum systems: from many-body interactions to stabilizer pumping , 2011, 1104.2507.

[61]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[62]  E. Knill,et al.  Realization of quantum error correction , 2004, Nature.

[63]  Klaus Molmer,et al.  Entanglement and quantum computation with ions in thermal motion , 2000 .

[64]  Peter Maunz,et al.  High speed, high fidelity detection of an atomic hyperfine qubit. , 2013, Optics letters.

[65]  C. Monroe,et al.  Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects , 2012, 1208.0391.

[66]  J M Amini,et al.  High-fidelity transport of trapped-ion qubits through an X-junction trap array. , 2009, Physical review letters.

[67]  S. Flammia,et al.  Logical Randomized Benchmarking , 2017, 1702.03688.

[68]  David G. Cory,et al.  Modeling Quantum Noise for efficient testing of fault-tolerant circuits , 2012, 1206.5407.

[69]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[70]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[71]  C. F. Roos,et al.  Simulating open quantum systems: from many-body interactions to stabilizer pumping , 2011, 1104.2507.

[72]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[73]  K. Brown,et al.  Fault tolerance with bare ancillary qubits for a [[7,1,3]] code , 2017, 1702.01155.

[74]  Andrew J. Landahl,et al.  Quantum computing by color-code lattice surgery , 2014, 1407.5103.

[75]  A Walther,et al.  Controlling fast transport of cold trapped ions. , 2012, Physical review letters.

[76]  G. Wendin Quantum information processing with superconducting circuits: a review , 2016, Reports on progress in physics. Physical Society.

[77]  Borzoo Bonakdarpour,et al.  Active Stabilization , 2011, SSS.

[78]  Erik M. Ferragut,et al.  Unbiased simulation of near-Clifford quantum circuits , 2017, 1703.00111.

[79]  F. Schmidt-Kaler,et al.  Quantum computing with trapped ions , 2008, 0809.4368.

[80]  F. Schmidt-Kaler,et al.  Assessing the progress of trapped-ion processors towards fault-tolerant quantum computation , 2017, 1705.02771.

[81]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[82]  Caroline Figgatt,et al.  Fault-tolerant quantum error detection , 2016, Science Advances.

[83]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[84]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[85]  Daniel Litinski,et al.  Lattice Surgery with a Twist: Simplifying Clifford Gates of Surface Codes , 2017, 1709.02318.

[86]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[87]  R. Blatt,et al.  Quantum computations on a topologically encoded qubit , 2014, Science.

[88]  Thomas G. Walker,et al.  Quantum information with Rydberg atoms , 2009, 0909.4777.

[89]  I. V. Inlek,et al.  Multispecies Trapped-Ion Node for Quantum Networking. , 2017, Physical review letters.

[90]  Simon J. Devitt,et al.  Lattice surgery translation for quantum computation , 2016, 1608.05208.

[91]  D M Lucas,et al.  High-fidelity readout of trapped-ion qubits. , 2008, Physical review letters.

[92]  Mauricio Gutierrez,et al.  Simulating the performance of a distance-3 surface code in a linear ion trap , 2017, 1710.01378.

[93]  I. V. Inlek,et al.  Modular entanglement of atomic qubits using photons and phonons , 2014, Nature Physics.

[94]  Robust , 2020, Definitions.

[95]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[96]  J D Wong-Campos,et al.  Demonstration of Two-Atom Entanglement with Ultrafast Optical Pulses. , 2017, Physical review letters.

[97]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[98]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[99]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[100]  W. Marsden I and J , 2012 .

[101]  Kenneth R. Brown,et al.  Approximation of realistic errors by Clifford channels and Pauli measurements , 2012, 1207.0046.

[102]  DiVincenzo,et al.  Fault-Tolerant Error Correction with Efficient Quantum Codes. , 1996, Physical review letters.

[103]  E. Knill,et al.  Single-qubit-gate error below 10 -4 in a trapped ion , 2011, 1104.2552.

[104]  D. Leibfried,et al.  Near-ground-state transport of trapped-ion qubits through a multidimensional array , 2011, 1106.5005.