Recursive Path Orderings Can Also Be Incremental

In this paper the Recursive Path Ordering is adapted for proving termination of rewriting incrementally. The new ordering, called Recursive Path Ordering with Modules, has as ingredients not only a precedence but also an underlying ordering $\sqsupset_{B}$. It can be used for incremental (innermost) termination proofs of hierarchical unions by defining $\sqsupset_{B}$as an extension of the termination proof obtained for the base system. Furthermore, there are practical situations in which such proofs can be done modularly.

[1]  D. Knuth,et al.  Simple Word Problems in Universal Algebras , 1983 .

[2]  Albert Rubio,et al.  Complete Monotonic Semantic Path Orderings , 2000, CADE.

[3]  Yoshihito Toyama,et al.  Counterexamples to Termination for the Direct Sum of Term Rewriting Systems , 1987, Inf. Process. Lett..

[4]  Albert Rubio,et al.  The higher-order recursive path ordering , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[5]  Enno Ohlebusch,et al.  Hierarchical termination revisited , 2002, Inf. Process. Lett..

[6]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[7]  Chang Liu,et al.  Term rewriting and all that , 2000, SOEN.

[8]  Mirtha Lina Fernández Venero Relaxing monotonicity for innermost termination , 2005, Inf. Process. Lett..

[9]  Albert Rubio,et al.  Extension Orderings , 1995, ICALP.

[10]  Bernhard Gramlich On Proving Termination by Innermost Termination , 1996, RTA.

[11]  Larry Wos,et al.  What Is Automated Reasoning? , 1987, J. Autom. Reason..

[12]  Nao Hirokawa,et al.  Dependency Pairs Revisited , 2004, RTA.

[13]  H. Brown,et al.  Computational Problems in Abstract Algebra , 1971 .

[14]  Mirtha Lina Fernández Venero On proving CE-termination of rewriting by size-change termination , 2005, Inf. Process. Lett..

[15]  Donald E. Knuth,et al.  Simple Word Problems in Universal Algebras††The work reported in this paper was supported in part by the U.S. Office of Naval Research. , 1970 .

[16]  Albert Rubio,et al.  Orderings for Innermost Termination , 2005, RTA.

[17]  Nachum Dershowitz Orderings for Term-Rewriting Systems , 1979, FOCS.

[18]  Cristian S. Calude Theories of computational complexity , 1988 .

[20]  Nachum Dershowitz,et al.  Orderings for term-rewriting systems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[21]  M.R.K. Kr ishna Rao,et al.  Modular Proofs for Completeness of Hierarchical Term Rewriting Systems , 1995, Theor. Comput. Sci..

[22]  Cristian S. Calude,et al.  The first example of a recursive function which is not primitive recursive , 1979 .

[23]  Jürgen Giesl,et al.  Improved Modular Termination Proofs Using Dependency Pairs , 2004, IJCAR.

[24]  Philip Wadler Call-by-Value Is Dual to Call-by-Name - Reloaded , 2005, RTA.

[25]  Jürgen Giesl,et al.  Termination of term rewriting using dependency pairs , 2000, Theor. Comput. Sci..

[26]  Jürgen Giesl,et al.  Size-Change Termination for Term Rewriting , 2003, RTA.

[27]  Neil D. Jones,et al.  The size-change principle for program termination , 2001, POPL '01.

[28]  David A. McAllester,et al.  Automated Deduction - CADE-17 , 2000, Lecture Notes in Computer Science.