Numerical simulations of very large impacts on the Earth

Abstract Vertical impacts on the Earth of asteroids 500–3000 km in diameter at 15 km/s have been numerically modelled using the hydrodynamic SOVA code. This code has been modified for the spherical system of coordinates well suited for simulations of very large impacts when the entire Earth is involved in motion. The simulations include cratering process, upward motion of deep mantle layers, fall of ejecta on the Earth, escape of matter to space, and formation of rock vapour atmospheres. The calculations were made for the period preceding disappearance of rock vapour atmospheres caused by radiation several years after the largest impacts. For very large vertical impacts at 15 km/s, escaping masses proved to be negligibly small. Quantities of kinetic, internal, potential, and radiated away energies are obtained as functions of time and space. After the impacts, a global layer of condensed ejecta covers the whole of the Earth's surface and the ejecta energy is sufficient to vaporise an ocean 3 km deep. The mass of rock vapour atmosphere is 10–23% of the impactor mass. This atmosphere has a greater mass than the water atmosphere if impactor is 2000 km in diameter or larger.

[1]  Boris A. Ivanov,et al.  IMPACT CRATER COLLAPSE , 1999 .

[2]  A. G. W. Cameron,et al.  The origin of the moon and the single-impact hypothesis III. , 1991 .

[3]  R. Canup,et al.  Origin of the earth and moon , 2000 .

[4]  S. Weidenschilling,et al.  Formation of Planetary Embryos , 2000 .

[5]  G. K. Gilbert The Moon's Face: A Study Of The Origin Of Its Features , 2017 .

[6]  V. Shuvalov,et al.  Multi-dimensional hydrodynamic code SOVA for interfacial flows: Application to the thermal layer effect , 1999 .

[7]  Thomas J. Ahrens,et al.  Impact on the earth, ocean and atmosphere , 1987 .

[8]  N. Sleep,et al.  Refugia from asteroid impacts on early Mars and the early Earth , 1998 .

[9]  W. Reimold,et al.  Global catastrophes in Earth history , 1989 .

[10]  Elisabetta Pierazzo,et al.  A Reevaluation of Impact Melt Production , 1997 .

[11]  J. H. Tillotson METALLIC EQUATIONS OF STATE FOR HYPERVELOCITY IMPACT , 1962 .

[12]  Vapor Optical Properties and Ablation of Large Chondrite and Ice Bodies in the Earth's Atmosphere , 1996 .

[13]  N. Sleep,et al.  Impacts and the Early Evolution of Life , 2006 .

[14]  V. Safronov,et al.  The Origin and Early Evolution of the Terrestrial Planets , 1986 .

[15]  Christopher P. McKay,et al.  Comets and the origin and evolution of life , 2006 .

[16]  A. V. Vityazev,et al.  Late stages of accumulation and early evolution of the planets. , 1991 .

[17]  H. Melosh,et al.  Hydrocode modeling of Chicxulub as an oblique impact event , 1999 .

[18]  V. Safronov,et al.  Evolution of the protoplanetary cloud and formation of the earth and the planets , 1972 .

[19]  J. M. McGlaun,et al.  CTH: A three-dimensional shock wave physics code , 1990 .

[20]  M. S. Matthews,et al.  Planetary Science. (Book Reviews: Origin and Evolution of Planetary and Satellite Atmospheres) , 1989 .

[21]  William K. Hartmann,et al.  Satellite-Sized Planetesimals and Lunar Origin , 1975 .

[22]  Erik Asphaug,et al.  Origin of the Moon in a giant impact near the end of the Earth's formation , 2001, Nature.

[23]  C. Chyba Terrestrial mantle siderophiles and the lunar impact record , 1991 .

[24]  A. Teterev,et al.  Impacts of Large Planetesimals on the Early Earth , 2004 .

[25]  R. Canup,et al.  Accretion of the Terrestrial Planets and the Earth-Moon System , 1998 .

[26]  B. Ivanov,et al.  Modeling Impact Crater Collapse: Acoustic Fluidization Implemented into a Hydrocode , 2001 .

[27]  S. L. Thompson,et al.  Improvements in the CHART D radiation-hydrodynamic code III: revised analytic equations of state , 1974 .

[28]  H. Melosh,et al.  Hydrocode simulations of Chicxulub crater collapse and peak-ring formation , 2002 .

[29]  William R. Ward,et al.  The Origin of the Moon , 1976 .

[30]  Vladimir V. Shuvalov,et al.  3D hydrodynamic code sova for multimaterial flows, application to Shoemakerlevy 9 comet impact problem , 1999 .

[31]  Elisabetta Pierazzo,et al.  Hydrocode simulation of the Chicxulub impact event and the production of climatically active gases , 1998 .

[32]  E. Shoemaker Interpretation of Lunar Craters , 1962 .

[33]  William K. Hartmann,et al.  The Time-Dependent Intense Bombardment of the Primordial Earth/Moon System , 2000 .

[34]  Piotr Wolanski,et al.  Free particle modelling of hypervelocity asteroid collisions with the Earth , 1994 .

[35]  John H. Jones,et al.  Origin of the earth , 1990 .

[36]  J. Chambers Making More Terrestrial Planets , 2001 .

[37]  Boris A. Ivanov,et al.  Numerical modelling of the impact crater depth–diameter dependence in an acoustically fluidized target , 2003 .

[38]  T. Ahrens,et al.  FORMATION OF ATMOSPHERES DURING ACCRETION OF THE TERRESTRIAL PLANETS , 1989, Origin and Evolution of Planetary and Satellite Atmospheres.

[39]  T. Donahue,et al.  Planetary Sciences: American and Soviet Research , 1991 .

[40]  David J. Stevenson,et al.  Origin of the Moon-The Collision Hypothesis , 1987 .

[41]  Zdeněk Kopal,et al.  Physics and Astronomy of the Moon , 1962 .

[42]  K. Zahnle Atmospheric chemistry by large impacts , 1990 .

[43]  R. Grieve,et al.  Vredefort, Sudbury, Chicxulub: Three of a Kind? , 2000 .