Proving Equalities in a Commutative Ring Done Right in Coq
暂无分享,去创建一个
[1] Julien Narboux,et al. A Decision Procedure for Geometry in Coq , 2004, TPHOLs.
[2] George E. Collins,et al. Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975, Automata Theory and Formal Languages.
[3] David Delahaye,et al. A Tactic Language for the System Coq , 2000, LPAR.
[4] Benjamin Grégoire,et al. A compiled implementation of strong reduction , 2002, ICFP '02.
[5] John Harrison,et al. A Skeptic's Approach to Combining HOL and Maple , 1998, Journal of Automated Reasoning.
[6] Samuel Boutin,et al. Using Reflection to Build Efficient and Certified Decision Procedures , 1997, TACS.
[7] Pierre Castéran,et al. Interactive Theorem Proving and Program Development , 2004, Texts in Theoretical Computer Science An EATCS Series.
[8] Martin Hofmann,et al. A Simple Model for Quotient Types , 1995, TLCA.
[9] Gilles Barthe,et al. Setoids in type theory , 2003, Journal of Functional Programming.
[10] David Delahaye,et al. Field, une procédure de décision pour les nombres réels en Coq , 2001, JFLA.
[11] Robert L. Constable,et al. The semantics of reflected proof , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.