The Lü system is a particular case of the Lorenz system
暂无分享,去创建一个
Alejandro J. Rodríguez-Luis | Manuel Merino | Fernando Fernández-Sánchez | Antonio Algaba | A. Algaba | F. Fernández-Sánchez | A. Rodríguez-Luis | M. Merino
[1] Hsien-Keng Chen,et al. Anti-control of chaos in rigid body motion , 2004 .
[2] Lixin Tian,et al. The analysis of a novel 3-D autonomous system and circuit implementation , 2009 .
[3] Meichun Zhao,et al. S˘i’lnikov-type orbits of Lorenz-family systems , 2007 .
[4] A. Rauh,et al. Analytical investigation of the hopf bifurcation in the Lorenz model , 1986 .
[5] Wenhu Huang,et al. Approximate Chaotic Solutions of the Lü System , 2009 .
[6] Alexander P. Krishchenko,et al. Localization of compact invariant sets of the Lorenz system , 2006 .
[7] Luis Fernando Mello,et al. Degenerate Hopf bifurcations in the Lü system , 2009 .
[8] Guanrong Chen,et al. Analysis of a new chaotic system , 2005 .
[9] S. Neukirch,et al. Integrals of motion and the shape of the attractor for the Lorenz model , 1997, chao-dyn/9702016.
[10] Guanrong Chen,et al. Existence of heteroclinic orbits of the Shil'nikov type in a 3D quadratic autonomous chaotic system , 2006 .
[11] Jiangang Zhang,et al. Nonlinear dynamics and circuit implementation for a new Lorenz-like attractor , 2009 .
[12] Lixin Tian,et al. A novel 3D autonomous system with different multilayer chaotic attractors , 2009 .
[13] Guanrong Chen,et al. Controlling in between the Lorenz and the Chen Systems , 2002, Int. J. Bifurc. Chaos.
[14] Alejandro J. Rodríguez-Luis,et al. Comments on ‘Global dynamics of the generalized Lorenz systems having invariant algebraic surfaces’ , 2014 .
[15] Guanrong Chen,et al. The compound structure of a new chaotic attractor , 2002 .
[16] A. Algaba,et al. Comment on “Existence of heteroclinic orbits of the Shilʼnikov type in a 3D quadratic autonomous chaotic system” [J. Math. Anal. Appl. 315 (2006) 106–119] , 2012 .
[17] Guanrong Chen,et al. A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system , 2008 .
[18] Chongxin Liu,et al. A new chaotic attractor , 2004 .
[19] Zhang Suo-chun,et al. Adaptive backstepping control of the uncertain Lü system , 2002 .
[20] Sir Peter Swinnerton-Dyer. The invariant algebraic surfaces of the Lorenz system , 2002, Mathematical Proceedings of the Cambridge Philosophical Society.
[21] Guanrong Chen,et al. Ši’lnikov Chaos in the Generalized Lorenz Canonical Form of Dynamical Systems , 2005 .
[22] Jinhu Lu,et al. Controlling Chen's chaotic attractor using backstepping design based on parameters identification , 2001 .
[23] A. Algaba,et al. Comment on "Sil'nikov chaos of the Liu system" [Chaos 18, 013113 (2008)]. , 2011, Chaos.
[24] Xiaoqun Wu,et al. Adaptive control of uncertain L system , 2004 .
[25] Xiang Zhang,et al. Invariant algebraic surfaces of the Lorenz system , 2002 .
[26] Daizhan Cheng,et al. A New Chaotic System and Beyond: the Generalized Lorenz-like System , 2004, Int. J. Bifurc. Chaos.
[27] Zhuosheng Lü,et al. Codimension-2 Bautin bifurcation in the Lü system , 2007 .
[28] Guanrong Chen,et al. Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system , 2006 .
[29] Guanrong Chen,et al. Local bifurcations of the Chen System , 2002, Int. J. Bifurc. Chaos.
[30] Qidi Wu,et al. Impulsive control and its application to Lü's chaotic system , 2004 .
[31] Zhenting Hou,et al. On the Non-equivalence of Lü System and Lorenz System , 2010, 2010 International Workshop on Chaos-Fractal Theories and Applications.
[32] Jaume Llibre,et al. Polynomial First integrals for the Chen and Lü Systems , 2012, Int. J. Bifurc. Chaos.
[33] Tao Liu,et al. A novel three-dimensional autonomous chaos system , 2009 .
[34] Sara Dadras,et al. A novel three-dimensional autonomous chaotic system generating two, three and four-scroll attractors , 2009 .
[35] Daizhan Cheng,et al. Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.
[36] Manuel Merino,et al. Chen's attractor exists if Lorenz repulsor exists: the Chen system is a special case of the Lorenz system. , 2013, Chaos.
[37] Julien Clinton Sprott,et al. Simplest dissipative chaotic flow , 1997 .
[38] H. Ren,et al. Heteroclinic orbits in Chen circuit with time delay , 2010 .
[39] Guanrong Chen,et al. Dynamical Analysis of a New Chaotic Attractor , 2002, Int. J. Bifurc. Chaos.
[40] Jaume Llibre,et al. Darboux integrability of the Lü system , 2013 .
[41] Jinhu Lu,et al. A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.
[42] H. Agiza,et al. Adaptive synchronization of Lü system with uncertain parameters , 2004 .
[43] Pei Yu,et al. A constructive proof on the existence of globally exponentially attractive set and positive invariant set of general Lorenz family , 2009 .
[44] Ju H. Park. Chaos synchronization of a chaotic system via nonlinear control , 2005 .
[45] Kesheng Wu,et al. Darboux polynomials and rational first integrals of the generalized Lorenz systems , 2012 .
[46] Claudio Pessoa,et al. Centers on center manifolds in the Lü system , 2011 .
[47] Dequan Li,et al. A three-scroll chaotic attractor , 2008 .
[48] Peter Swinnerton-Dyer,et al. Bounds for trajectories of the Lorenz equations: an illustration of how to choose Liapunov functions , 2001 .
[49] Chongxin Liu,et al. Passive control on a unified chaotic system , 2010 .
[50] Zhouchao Wei,et al. Dynamical behaviors of a chaotic system with no equilibria , 2011 .
[51] Yongguang Yu,et al. Hopf bifurcation analysis of the Lü system , 2004 .
[52] Alejandro J. Rodríguez-Luis,et al. On Darboux polynomials and rational first integrals of the generalized Lorenz system , 2014 .
[53] Jitao Sun,et al. Controlling chaotic Lu systems using impulsive control , 2005 .
[54] A. Algaba,et al. Comment on ‘Šilnikov-type orbits of Lorenz-family systems’ [Physica A 375 (2007) 438–446] , 2013 .
[55] M. T. Yassen,et al. Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems , 2012, Appl. Math. Comput..
[56] H. N. Agiza,et al. Chaos synchronization of Lü dynamical system , 2004 .
[57] Gennady A. Leonov,et al. General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu–Morioka, Lu and Chen systems , 2012 .
[58] Gheorghe Tigan,et al. Heteroclinic orbits in the T and the Lü systems , 2009 .
[59] M. T. Yassen,et al. Feedback and adaptive synchronization of chaotic Lü system , 2005 .
[60] Tassos Bountis,et al. On the topology of the Lü attractor and related systems , 2008 .
[61] Jun-an Lu,et al. Synchronization of a unified chaotic system and the application in secure communication , 2002 .
[62] Sara Dadras,et al. Analysis of a new 3D smooth autonomous system with different wing chaotic attractors and transient chaos , 2010 .
[63] Colin Sparrow,et al. The Lorenz equations , 1982 .
[64] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[65] A. Algaba,et al. Comment on “Heteroclinic orbits in Chen circuit with time delay” [Commun. Nonlinear Sci. Numer. Simulat. 15 (2010) 3058–3066] , 2012 .
[66] Alejandro J. Rodríguez-Luis,et al. Comment on "A constructive proof on the existence of globally exponentially attractive set and positive invariant set of general Lorenz family", P. Yu, X.X. Liao, S.L. Xie, Y.L. Fu [Commun Nonlinear Sci Numer Simulat 14 (2009) 2886-2896] , 2014, Commun. Nonlinear Sci. Numer. Simul..
[67] Lilian Huang,et al. Synchronization of chaotic systems via nonlinear control , 2004 .
[68] Buncha Munmuangsaen,et al. A new five-term simple chaotic attractor , 2009 .
[69] Chunlai Mu,et al. On the Boundness of Some solutions of the Lü System , 2012, Int. J. Bifurc. Chaos.
[70] Julien Clinton Sprott,et al. Elementary quadratic chaotic flows with no equilibria , 2013 .
[71] Guanrong Chen,et al. YET ANOTHER CHAOTIC ATTRACTOR , 1999 .
[72] Guanrong Chen,et al. A New Chaotic System and its Generation , 2003, Int. J. Bifurc. Chaos.
[73] Chongxin Liu. A novel chaotic attractor , 2009 .
[74] Wuneng Zhou,et al. On dynamics analysis of a new chaotic attractor , 2008 .
[75] W. Tucker. The Lorenz attractor exists , 1999 .
[76] Qigui Yang,et al. Dynamics of the Lü System on the Invariant Algebraic Surface and at infinity , 2011, Int. J. Bifurc. Chaos.
[78] Guanrong Chen,et al. Chen's Attractor Exists , 2004, Int. J. Bifurc. Chaos.
[79] Liu Chong-Xin,et al. A new butterfly-shaped attractor of Lorenz-like system , 2006 .
[80] Fangqi Chen,et al. Sil'nikov chaos of the Liu system. , 2008, Chaos.
[81] Jaume Llibre,et al. Global Dynamics of the Lorenz System with Invariant Algebraic Surfaces , 2010, Int. J. Bifurc. Chaos.
[82] Zhang Suo-chun,et al. Controlling uncertain Lü system using backstepping design , 2003 .
[83] K. Wu,et al. Global dynamics of the generalized Lorenz systems having invariant algebraic surfaces , 2013 .
[84] Xiang Zhang,et al. Dynamics of the Lorenz system having an invariant algebraic surface , 2007 .
[85] Marius-F. Danca. Synthesizing the Lü Attractor by Parameter-Switching , 2011, Int. J. Bifurc. Chaos.
[86] Wen-June Wang,et al. A novel synchronization scheme with a simple linear control and guaranteed convergence time for generalized Lorenz chaotic systems. , 2012, Chaos.
[87] Xianfeng Li,et al. Nonlinear dynamics and circuit realization of a new chaotic flow: A variant of Lorenz, Chen and Lu , 2009 .
[88] Yongguang Yu,et al. Hopf bifurcation in the Lü system , 2003 .
[89] Qinsheng Bi,et al. Hopf bifurcation analysis in the T system , 2010 .
[90] Marek Kus,et al. Integrals of motion for the Lorenz system , 1983 .