The Lü system is a particular case of the Lorenz system

Abstract Between the so-called Lorenz-like systems, the Lu system, x ˙ = a ( y − x ) , y ˙ = c y − x z , z ˙ = − b z + x y , has attracted great interest in the last decade. In this Letter we show that, generically ( c ≠ 0 ), there is a homothetic transformation which converts the Lu system into the Lorenz system and, therefore, all the dynamical behavior exhibited by the Lu system is also present in the Lorenz system. Consequently, all the results obtained in the papers devoted to the study of the Lu system can be trivially derived from the corresponding results on the Lorenz system.

[1]  Hsien-Keng Chen,et al.  Anti-control of chaos in rigid body motion , 2004 .

[2]  Lixin Tian,et al.  The analysis of a novel 3-D autonomous system and circuit implementation , 2009 .

[3]  Meichun Zhao,et al.  S˘i’lnikov-type orbits of Lorenz-family systems , 2007 .

[4]  A. Rauh,et al.  Analytical investigation of the hopf bifurcation in the Lorenz model , 1986 .

[5]  Wenhu Huang,et al.  Approximate Chaotic Solutions of the Lü System , 2009 .

[6]  Alexander P. Krishchenko,et al.  Localization of compact invariant sets of the Lorenz system , 2006 .

[7]  Luis Fernando Mello,et al.  Degenerate Hopf bifurcations in the Lü system , 2009 .

[8]  Guanrong Chen,et al.  Analysis of a new chaotic system , 2005 .

[9]  S. Neukirch,et al.  Integrals of motion and the shape of the attractor for the Lorenz model , 1997, chao-dyn/9702016.

[10]  Guanrong Chen,et al.  Existence of heteroclinic orbits of the Shil'nikov type in a 3D quadratic autonomous chaotic system , 2006 .

[11]  Jiangang Zhang,et al.  Nonlinear dynamics and circuit implementation for a new Lorenz-like attractor , 2009 .

[12]  Lixin Tian,et al.  A novel 3D autonomous system with different multilayer chaotic attractors , 2009 .

[13]  Guanrong Chen,et al.  Controlling in between the Lorenz and the Chen Systems , 2002, Int. J. Bifurc. Chaos.

[14]  Alejandro J. Rodríguez-Luis,et al.  Comments on ‘Global dynamics of the generalized Lorenz systems having invariant algebraic surfaces’ , 2014 .

[15]  Guanrong Chen,et al.  The compound structure of a new chaotic attractor , 2002 .

[16]  A. Algaba,et al.  Comment on “Existence of heteroclinic orbits of the Shilʼnikov type in a 3D quadratic autonomous chaotic system” [J. Math. Anal. Appl. 315 (2006) 106–119] , 2012 .

[17]  Guanrong Chen,et al.  A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system , 2008 .

[18]  Chongxin Liu,et al.  A new chaotic attractor , 2004 .

[19]  Zhang Suo-chun,et al.  Adaptive backstepping control of the uncertain Lü system , 2002 .

[20]  Sir Peter Swinnerton-Dyer The invariant algebraic surfaces of the Lorenz system , 2002, Mathematical Proceedings of the Cambridge Philosophical Society.

[21]  Guanrong Chen,et al.  Ši’lnikov Chaos in the Generalized Lorenz Canonical Form of Dynamical Systems , 2005 .

[22]  Jinhu Lu,et al.  Controlling Chen's chaotic attractor using backstepping design based on parameters identification , 2001 .

[23]  A. Algaba,et al.  Comment on "Sil'nikov chaos of the Liu system" [Chaos 18, 013113 (2008)]. , 2011, Chaos.

[24]  Xiaoqun Wu,et al.  Adaptive control of uncertain L system , 2004 .

[25]  Xiang Zhang,et al.  Invariant algebraic surfaces of the Lorenz system , 2002 .

[26]  Daizhan Cheng,et al.  A New Chaotic System and Beyond: the Generalized Lorenz-like System , 2004, Int. J. Bifurc. Chaos.

[27]  Zhuosheng Lü,et al.  Codimension-2 Bautin bifurcation in the Lü system , 2007 .

[28]  Guanrong Chen,et al.  Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system , 2006 .

[29]  Guanrong Chen,et al.  Local bifurcations of the Chen System , 2002, Int. J. Bifurc. Chaos.

[30]  Qidi Wu,et al.  Impulsive control and its application to Lü's chaotic system , 2004 .

[31]  Zhenting Hou,et al.  On the Non-equivalence of Lü System and Lorenz System , 2010, 2010 International Workshop on Chaos-Fractal Theories and Applications.

[32]  Jaume Llibre,et al.  Polynomial First integrals for the Chen and Lü Systems , 2012, Int. J. Bifurc. Chaos.

[33]  Tao Liu,et al.  A novel three-dimensional autonomous chaos system , 2009 .

[34]  Sara Dadras,et al.  A novel three-dimensional autonomous chaotic system generating two, three and four-scroll attractors , 2009 .

[35]  Daizhan Cheng,et al.  Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.

[36]  Manuel Merino,et al.  Chen's attractor exists if Lorenz repulsor exists: the Chen system is a special case of the Lorenz system. , 2013, Chaos.

[37]  Julien Clinton Sprott,et al.  Simplest dissipative chaotic flow , 1997 .

[38]  H. Ren,et al.  Heteroclinic orbits in Chen circuit with time delay , 2010 .

[39]  Guanrong Chen,et al.  Dynamical Analysis of a New Chaotic Attractor , 2002, Int. J. Bifurc. Chaos.

[40]  Jaume Llibre,et al.  Darboux integrability of the Lü system , 2013 .

[41]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[42]  H. Agiza,et al.  Adaptive synchronization of Lü system with uncertain parameters , 2004 .

[43]  Pei Yu,et al.  A constructive proof on the existence of globally exponentially attractive set and positive invariant set of general Lorenz family , 2009 .

[44]  Ju H. Park Chaos synchronization of a chaotic system via nonlinear control , 2005 .

[45]  Kesheng Wu,et al.  Darboux polynomials and rational first integrals of the generalized Lorenz systems , 2012 .

[46]  Claudio Pessoa,et al.  Centers on center manifolds in the Lü system , 2011 .

[47]  Dequan Li,et al.  A three-scroll chaotic attractor , 2008 .

[48]  Peter Swinnerton-Dyer,et al.  Bounds for trajectories of the Lorenz equations: an illustration of how to choose Liapunov functions , 2001 .

[49]  Chongxin Liu,et al.  Passive control on a unified chaotic system , 2010 .

[50]  Zhouchao Wei,et al.  Dynamical behaviors of a chaotic system with no equilibria , 2011 .

[51]  Yongguang Yu,et al.  Hopf bifurcation analysis of the Lü system , 2004 .

[52]  Alejandro J. Rodríguez-Luis,et al.  On Darboux polynomials and rational first integrals of the generalized Lorenz system , 2014 .

[53]  Jitao Sun,et al.  Controlling chaotic Lu systems using impulsive control , 2005 .

[54]  A. Algaba,et al.  Comment on ‘Šilnikov-type orbits of Lorenz-family systems’ [Physica A 375 (2007) 438–446] , 2013 .

[55]  M. T. Yassen,et al.  Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems , 2012, Appl. Math. Comput..

[56]  H. N. Agiza,et al.  Chaos synchronization of Lü dynamical system , 2004 .

[57]  Gennady A. Leonov,et al.  General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu–Morioka, Lu and Chen systems , 2012 .

[58]  Gheorghe Tigan,et al.  Heteroclinic orbits in the T and the Lü systems , 2009 .

[59]  M. T. Yassen,et al.  Feedback and adaptive synchronization of chaotic Lü system , 2005 .

[60]  Tassos Bountis,et al.  On the topology of the Lü attractor and related systems , 2008 .

[61]  Jun-an Lu,et al.  Synchronization of a unified chaotic system and the application in secure communication , 2002 .

[62]  Sara Dadras,et al.  Analysis of a new 3D smooth autonomous system with different wing chaotic attractors and transient chaos , 2010 .

[63]  Colin Sparrow,et al.  The Lorenz equations , 1982 .

[64]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[65]  A. Algaba,et al.  Comment on “Heteroclinic orbits in Chen circuit with time delay” [Commun. Nonlinear Sci. Numer. Simulat. 15 (2010) 3058–3066] , 2012 .

[66]  Alejandro J. Rodríguez-Luis,et al.  Comment on "A constructive proof on the existence of globally exponentially attractive set and positive invariant set of general Lorenz family", P. Yu, X.X. Liao, S.L. Xie, Y.L. Fu [Commun Nonlinear Sci Numer Simulat 14 (2009) 2886-2896] , 2014, Commun. Nonlinear Sci. Numer. Simul..

[67]  Lilian Huang,et al.  Synchronization of chaotic systems via nonlinear control , 2004 .

[68]  Buncha Munmuangsaen,et al.  A new five-term simple chaotic attractor , 2009 .

[69]  Chunlai Mu,et al.  On the Boundness of Some solutions of the Lü System , 2012, Int. J. Bifurc. Chaos.

[70]  Julien Clinton Sprott,et al.  Elementary quadratic chaotic flows with no equilibria , 2013 .

[71]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[72]  Guanrong Chen,et al.  A New Chaotic System and its Generation , 2003, Int. J. Bifurc. Chaos.

[73]  Chongxin Liu A novel chaotic attractor , 2009 .

[74]  Wuneng Zhou,et al.  On dynamics analysis of a new chaotic attractor , 2008 .

[75]  W. Tucker The Lorenz attractor exists , 1999 .

[76]  Qigui Yang,et al.  Dynamics of the Lü System on the Invariant Algebraic Surface and at infinity , 2011, Int. J. Bifurc. Chaos.

[78]  Guanrong Chen,et al.  Chen's Attractor Exists , 2004, Int. J. Bifurc. Chaos.

[79]  Liu Chong-Xin,et al.  A new butterfly-shaped attractor of Lorenz-like system , 2006 .

[80]  Fangqi Chen,et al.  Sil'nikov chaos of the Liu system. , 2008, Chaos.

[81]  Jaume Llibre,et al.  Global Dynamics of the Lorenz System with Invariant Algebraic Surfaces , 2010, Int. J. Bifurc. Chaos.

[82]  Zhang Suo-chun,et al.  Controlling uncertain Lü system using backstepping design , 2003 .

[83]  K. Wu,et al.  Global dynamics of the generalized Lorenz systems having invariant algebraic surfaces , 2013 .

[84]  Xiang Zhang,et al.  Dynamics of the Lorenz system having an invariant algebraic surface , 2007 .

[85]  Marius-F. Danca Synthesizing the Lü Attractor by Parameter-Switching , 2011, Int. J. Bifurc. Chaos.

[86]  Wen-June Wang,et al.  A novel synchronization scheme with a simple linear control and guaranteed convergence time for generalized Lorenz chaotic systems. , 2012, Chaos.

[87]  Xianfeng Li,et al.  Nonlinear dynamics and circuit realization of a new chaotic flow: A variant of Lorenz, Chen and Lu , 2009 .

[88]  Yongguang Yu,et al.  Hopf bifurcation in the Lü system , 2003 .

[89]  Qinsheng Bi,et al.  Hopf bifurcation analysis in the T system , 2010 .

[90]  Marek Kus,et al.  Integrals of motion for the Lorenz system , 1983 .