The Synthesis and Biological Applications of the 1,2,3-Dithiazole Scaffold

The 1,2,3-dithiazole is an underappreciated scaffold in medicinal chemistry despite possessing a wide variety of nascent pharmacological activities. The scaffold has a potential wealth of opportunities within these activities and further afield. The 1,2,3-dithiazole scaffold has already been reported as an antifungal, herbicide, antibacterial, anticancer agent, antiviral, antifibrotic, and is a melanin and Arabidopsis gibberellin 2-oxidase inhibitor. These structure activity relationships are discussed in detail, along with insights and future directions. The review also highlights selected synthetic strategies developed towards the 1,2,3-dithiazole scaffold, how these are integrated to accessibility of chemical space, and to the prism of current and future biological activities.

[1]  A. Poso,et al.  Synthesis and evaluation of 1,2,3-dithiazole inhibitors of the nucleocapsid protein of feline immunodeficiency virus (FIV) as a model for HIV infection. , 2022, Bioorganic & Medicinal Chemistry.

[2]  Fan Yang,et al.  Comparative reactivity profiling of cysteine-specific probes by chemoproteomics , 2022, Current Research in Chemical Biology.

[3]  Nino Russo,et al.  Computational Study Reveals the Role of Water Molecules in the Inhibition Mechanism of LAT1 by 1,2,3-Dithiazoles , 2021, J. Chem. Inf. Model..

[4]  P. Koutentis,et al.  Design and evaluation of 1,2,3-dithiazoles and fused 1,2,4-dithiazines as anti-cancer agents. , 2021, Bioorganic & medicinal chemistry letters.

[5]  R. Medeiros,et al.  ASCT2 and LAT1 Contribution to the Hallmarks of Cancer: From a Molecular Perspective to Clinical Translation , 2021, Cancers.

[6]  A. Poso,et al.  Antimicrobial and Antifungal Activity of Rare Substituted 1,2,3-Thiaselenazoles and Corresponding Matched Pair 1,2,3-Dithiazoles , 2020, Antibiotics.

[7]  J. Furuse,et al.  First-in-human phase I study of JPH203, an L-type amino acid transporter 1 inhibitor, in patients with advanced solid tumors , 2020, Investigational New Drugs.

[8]  A. Poso,et al.  Synthesis and comparison of substituted 1,2,3-dithiazole and 1,2,3-thiaselenazole as inhibitors of the feline immunodeficiency virus (FIV) nucleocapsid protein as a model for HIV infection. , 2019, Bioorganic & medicinal chemistry letters.

[9]  E. Weerapana,et al.  Reactive-cysteine profiling for drug discovery. , 2019, Current opinion in chemical biology.

[10]  E. Weerapana,et al.  Cysteine reactivity across the subcellular universe. , 2019, Current opinion in chemical biology.

[11]  Lai Wang,et al.  The role of ASCT2 in cancer: A review , 2018, European journal of pharmacology.

[12]  M. Losso,et al.  The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology , 2018, Front. Cell Dev. Biol..

[13]  V. Thiéry,et al.  Synthesis of 2-Mercapto-(2-Oxoindolin-3-Ylidene)Acetonitriles from 3-(4-Chloro-5H-1,2,3-Dithiazol-5-Ylidene)Indolin-2-ones , 2018, Molecules.

[14]  A. Adibekian,et al.  Cysteine-reactive probes and their use in chemical proteomics. , 2018, Chemical communications.

[15]  S. Knapp,et al.  The Cysteinome of Protein Kinases as a Target in Drug Development. , 2018, Angewandte Chemie.

[16]  S. Bröer Amino Acid Transporters as Disease Modifiers and Drug Targets , 2018, SLAS discovery : advancing life sciences R & D.

[17]  Prateek Shrivastava,et al.  World health organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics , 2018 .

[18]  M. S. Mikhailov,et al.  Fused 1,2,3-Thiaselenazoles Synthesized from 1,2,3-Dithiazoles through Selective Chalcogen Exchange. , 2017, Chemistry.

[19]  P. Koutentis,et al.  Potent inhibitors of human LAT1 (SLC7A5) transporter based on dithiazole and dithiazine compounds for development of anticancer drugs. , 2017, Biochemical pharmacology.

[20]  A. Poso,et al.  Evaluation of Substituted 1,2,3‐Dithiazoles as Inhibitors of the Feline Immunodeficiency Virus (FIV) Nucleocapsid Protein via a Proposed Zinc Ejection Mechanism , 2016, ChemMedChem.

[21]  H. Flores-Rozas,et al.  The Mechanistic Targets of Antifungal Agents: An Overview. , 2016, Mini reviews in medicinal chemistry.

[22]  O. Rakitin,et al.  Fused 1,2,3-Dithiazoles: Convenient Synthesis, Structural Characterization, and Electrochemical Properties , 2016, Molecules.

[23]  P. Koutentis,et al.  The Reaction of DABCO with 4-Chloro-5H-1,2,3-dithiazoles: Synthesis and Chemistry of 4-[N-(2-Chloroethyl)piperazin-1-yl]-5H-1,2,3-dithiazoles. , 2015, The Journal of organic chemistry.

[24]  C. Pannecouque,et al.  Design and Synthesis of DiselenoBisBenzamides (DISeBAs) as Nucleocapsid Protein 7 (NCp7) Inhibitors with anti-HIV Activity. , 2015, Journal of medicinal chemistry.

[25]  A. Kalogirou,et al.  A Qualitative Comparison of the Reactivities of 3,4,4,5-Tetrachloro-4H-1,2,6-thiadiazine and 4,5-Dichloro-1,2,3-dithiazolium Chloride , 2015, Molecules.

[26]  P. Koutentis,et al.  1,2,3-Dithiazoles – new reversible melanin synthesis inhibitors: a chemical genomics study , 2015 .

[27]  M. Cooper,et al.  Helping Chemists Discover New Antibiotics. , 2015, ACS infectious diseases.

[28]  A. Kalogirou,et al.  Ring Transformation of (4-Chloro-5H-1,2,3-dithiazol-5-ylidene)acetonitriles to 3-Haloisothiazole-5-carbonitriles. , 2014 .

[29]  P. Koutentis,et al.  Reinvestigating the Reaction of 1H‐Pyrazol‐5‐amines with 4,5‐Dichloro‐1,2,3‐dithiazolium Chloride: A Route to Pyrazolo[3,4‐c]isothiazoles and Pyrazolo[3,4‐d]thiazoles. , 2014 .

[30]  A. Kalogirou,et al.  Ring transformation of (4-chloro-5H-1,2,3-dithiazol-5-ylidene)acetonitriles to 3-haloisothiazole-5-carbonitriles , 2014 .

[31]  P. Koutentis,et al.  Reinvestigating the reaction of 1H-pyrazol-5-amines with 4,5-dichloro-1,2,3-dithiazolium chloride: a route to pyrazolo[3,4-c]isothiazoles and pyrazolo[3,4-d]thiazoles. , 2014, Journal of Organic Chemistry.

[32]  P. Koutentis,et al.  Inactivation of the glutamine/amino acid transporter ASCT2 by 1,2,3-dithiazoles: proteoliposomes as a tool to gain insights in the molecular mechanism of action and of antitumor activity. , 2012, Toxicology and applied pharmacology.

[33]  P. Koutentis,et al.  Synthesis of [(4-Chloro-5H-1,2,3-dithiazol-5-ylidene)amino]azines , 2011, Molecules.

[34]  M. Nakajima,et al.  Screening and characterization of an inhibitory chemical specific to Arabidopsis gibberellin 2-oxidases. , 2010, Bioorganic & medicinal chemistry letters.

[35]  Y. Nelyubina,et al.  Reactions of 4-substituted 5H-1,2,3-dithiazoles with primary and secondary amines: fast and convenient synthesis of 1,2,5-thiadiazoles, 2-iminothioacetamides and 2-oxoacetamides , 2010 .

[36]  C. Schofield,et al.  Inhibition of the histone lysine demethylase JMJD2A by ejection of structural Zn(II). , 2009, Chemical communications.

[37]  A. Kalogirou,et al.  The degradation of 4,5-dichloro-1,2,3-dithiazolium chloride in wet solvents , 2009 .

[38]  A. Kalogirou,et al.  The reaction of 4,5-dichloro-1,2,3-dithiazolium chloride with DMSO: an improved synthesis of 4-chloro-1,2,3-dithiazol-5H-one , 2009 .

[39]  Kristina M. Cook,et al.  Epidithiodiketopiperazines Block the Interaction between Hypoxia-inducible Factor-1α (HIF-1α) and p300 by a Zinc Ejection Mechanism* , 2009, The Journal of Biological Chemistry.

[40]  L. S. Konstantinova,et al.  One-pot synthesis of 5-phenylimino, 5-thieno or 5-oxo-1,2,3-dithiazoles and evaluation of their antimicrobial and antitumor activity. , 2009, Bioorganic & medicinal chemistry letters.

[41]  L. S. Konstantinova,et al.  Synthesis and properties of 1,2,3-dithiazoles , 2008 .

[42]  O. Rakitin 1,2-Oxa/thia-3-azoles , 2008 .

[43]  V. Ananthanarayanan,et al.  Identification of small molecule chemical inhibitors of the collagen-specific chaperone Hsp47. , 2005, Journal of medicinal chemistry.

[44]  P. Koutentis The Preparation and Characterization of 5-Substituted-4-chloro-1,2,3-dithiazolium Salts and their Conversion into 4-Substituted-3-chloro-1,2,5-thiadiazoles , 2005, Molecules.

[45]  K. Lyssenko,et al.  New routes to 1,2-dithiole-3-thiones and 3-imines , 2005 .

[46]  M. Razzaque,et al.  Collagens, collagen-binding heat shock protein 47 and transforming growth factor-beta 1 are induced in cicatricial pemphigoid: possible role(s) in dermal fibrosis. , 2002, Cytokine.

[47]  P. Brigidi,et al.  Antimicrobial and antitumor activity of N-heteroimmine-1,2,3-dithiazoles and their transformation in triazolo-, imidazo-, and pyrazolopirimidines. , 2002, Bioorganic & medicinal chemistry.

[48]  M. Kavanaugh,et al.  Truncated Forms of the Dual Function Human ASCT2 Neutral Amino Acid Transporter/Retroviral Receptor Are Translationally Initiated at Multiple Alternative CUG and GUG Codons* , 2001, The Journal of Biological Chemistry.

[49]  C. Miles,et al.  Metal complexes of the mycotoxins sporidesmin A and gliotoxin, investigated by electrospray ionisation mass spectrometry. , 2001, Journal of inorganic biochemistry.

[50]  C. Miles,et al.  Metal complexes of sporidesmin D and dimethylgliotoxin, investigated by electrospray ionisation mass spectrometry. , 2001, Journal of inorganic biochemistry.

[51]  W. Rademacher GROWTH RETARDANTS: Effects on Gibberellin Biosynthesis and Other Metabolic Pathways. , 2000, Annual review of plant physiology and plant molecular biology.

[52]  J. Pickering,et al.  Heat shock protein 47 is expressed in fibrous regions of human atheroma and Is regulated by growth factors and oxidized low-density lipoprotein. , 2000, Circulation.

[53]  K. Kim,et al.  Synthesis of New 5‐Alkylidene‐4‐chloro‐5H‐1,2,3‐dithiazoles and Their Stereochemistry. , 1999 .

[54]  K. Kim,et al.  Synthesis of new5-alkylidene-4-chloro-5H-1,2,3-dithiazoles and their stereochemistry , 1999 .

[55]  H. C. Plas SN(ANRORC) REACTIONS IN AZAHETEROCYCLES CONTAINING AN INSIDE LEAVING GROUP , 1999 .

[56]  H. C. Plas SN(ANRORC) REACTIONS IN AZINES, CONTAINING AN OUTSIDE LEAVING GROUP , 1999 .

[57]  M. Razzaque,et al.  Immunolocalization of collagen and collagen-binding heat shock protein 47 in fibrotic lung diseases. , 1998, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc.

[58]  K. Kim Synthesis and Reactions of 1,2,3-Dithiazoles , 1998 .

[59]  V. Thiéry,et al.  Antimicrobial Activity of Novel N-Quinolinyl and N-Naphthylimino-1,2,3-dithiazoles. , 1998 .

[60]  V. Thiéry,et al.  Antimicrobial activity of novel N-quinolinyl and N-naphthylimino-1,2,3-dithiazoles , 1998 .

[61]  D. Clarke,et al.  New synthesis of isothiazoles from primary enamines , 1998 .

[62]  V. Thiéry,et al.  Antimicrobial Activity of Novel N-Arylimino-1, 2, 3-Dithiazoles , 1998 .

[63]  M. Razzaque,et al.  Collagen‐binding heat shock protein (HSP) 47 expression in anti‐thymocyte serum (ATS)‐induced glomerulonephritis , 1997, The Journal of pathology.

[64]  G. Guillaumet,et al.  SYNTHESIS OF 3,1-BENZOXAZINES, 3,1-BENZOTHIAZINES AND 3,1-BENZOXAZEPINES VIA N-ARYLIMINO-1,2,3-DITHIAZOLES , 1997 .

[65]  K. Kim Recent Advances in 1,2,3-Dithiazole Chemistry , 1997 .

[66]  T. Besson,et al.  Antimicrobial evaluation of 3,1-benzoxazin-4-ones, 3,1-benzothiazin-4-ones, 4-alkoxyquinazolin-2-carbonitriles and N-arylimino-1,2,3-dithiazoles , 1996 .

[67]  T. Besson,et al.  Antibacterial evaluation of novel N-Arylimino-1,2,3-dithiazoles and N-arylcyanothioformamides , 1996 .

[68]  K. Emayan,et al.  1,2,3-Dithiazoles and new routes to 3,1-benzoxazin-4-ones, 3,1-benzothiazin-4-ones and N-arylcyanothioformamides , 1995 .

[69]  T. Besson,et al.  Some chemistry of 4,5-dichloro-1,2,3-dithiazolium chloride and its derivatives , 1995 .

[70]  M. Fukumoto,et al.  Coexpression of the collagen-binding stress protein HSP47 gene and the alpha 1(I) and alpha 1(III) collagen genes in carbon tetrachloride-induced rat liver fibrosis. , 1994, The Journal of clinical investigation.

[71]  Hyung-Kun Lee,et al.  Novel Synthesis of 5-(Arylimino)-4-(dialkylamino)-5H-1,2,3-dithiazoles and the Mechanism of Their Formation , 1994 .

[72]  A. Cuadro,et al.  4,5-Dichloro-1,2,3-dithiazolium chloride (Appel's Salt): Reactions with N-nucleophiles. , 1994 .

[73]  David G. Roe,et al.  Cyclopenta-1,2,3-dithiazoles and related compounds , 1993 .

[74]  S. Weinreb,et al.  Generation of esters from carboxylic acids using Appel's salt (4,5-dichloro-1,2,3-dithiazolium chloride) , 1993 .

[75]  K. Kim,et al.  A New Procedure to N‐Arylcyanothioformamides from 5‐Arylimino‐4‐chloro‐ 5H‐1,2,3‐dithiazoles. , 1992 .

[76]  C. Rees Polysulfur‐nitrogen heterocyclic chemistry , 1992 .

[77]  Masatomo Kobayashi,et al.  Effects of a New Plant Growth Regulator Prohexadione Calcium (BX-112) on Shoot Elongation Caused by Exogenously Applied Gibberellins in Rice (Oryza sativa L.) Seedlings , 1990 .

[78]  K. Yamada,et al.  Phosphorylation and transformation sensitivity of a major collagen-binding protein of fibroblasts. , 1986, The Journal of biological chemistry.

[79]  R. Appel,et al.  Synthese und Reaktionen des 4,5‐Dichlor‐1,2,3‐dithiazolium‐chlorids , 1985 .

[80]  B. Stowasser,et al.  Synthesis and properties of 4,6-Di-t-Butyl-Cyclopenta-1,2-Dithiole and its 3-aza-derivative , 1985 .

[81]  C. Stirling The Chemistry of the sulphonium group , 1981 .

[82]  F. Boberg,et al.  Über 1,2-Dithiacyclopentene; XXIX1. 3-Thioxo-3H-1,2-Dithiole aus 3-Chloro-1,2-dithiolium-chloriden , 1975 .

[83]  U. Wannagat,et al.  Reaktionen des Schwefeldichlorids mit Pyridin und verwandten Verbindungen , 1957 .