Elements of Financial Risk Management

The Second Edition of this best-selling book expands its advanced approach to financial risk models by covering market, credit, and integrated risk. With new data that cover the recent financial crisis, it combines Excel-based empirical exercises at the end of each chapter with online exercises so readers can use their own data. Its unified GARCH modeling approach, empirically sophisticated and relevant yet easy to implement, sets this book apart from others. Five new chapters and updated end-of-chapter questions and exercises, as well as Excel-solutions manual, support its step-by-step approach to choosing tools and solving problems. Examines market risk, credit risk, and operational risk Provides exceptional coverage of GARCH models Features online Excel-based empirical exercises

[1]  Matthew Pritsker,et al.  The Hidden Dangers of Historical Simulation , 2001 .

[2]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[3]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[4]  R. Engle Dynamic Conditional Correlation : A Simple Class of Multivariate GARCH Models , 2000 .

[5]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[6]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[7]  J. Wooldridge,et al.  Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances , 1992 .

[8]  Carol Alexander,et al.  A Primer on the Orthogonal GARCH Model , 2001 .

[9]  Rajna Gibson,et al.  Model risk : concepts, calibration and pricing , 2000 .

[10]  Ludger Hentschel All in the family Nesting symmetric and asymmetric GARCH models , 1995 .

[11]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[12]  René M. Stulz,et al.  Rethinking Risk Management , 1996, Journal of Applied Corporate Finance.

[13]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[14]  Til Schuermann,et al.  Horizon Problems and Extreme Events in Financial Risk Management , 1998 .

[15]  F. Longin,et al.  From value at risk to stress testing : The extreme value approach Franc ß ois , 2000 .

[16]  Tim Bollerslev,et al.  Long-term equity anticipation securities and stock market volatility dynamics , 1999 .

[17]  Eric Renault,et al.  A Note on Hedging in ARCH and Stochastic Volatility Option Pricing Models , 1998 .

[18]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[19]  Christopher Marshall,et al.  Value at Risk , 1996 .

[20]  Peter Christoffersen,et al.  Série Scientifique Scientific Series the Importance of the Loss Function in Option Valuation the Importance of the Loss Function in Option Valuation , 2022 .

[21]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[22]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[23]  Peter H. Ritchken,et al.  Pricing Options under Generalized GARCH and Stochastic Volatility Processes , 1999 .

[24]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[25]  D. Duffie,et al.  An Overview of Value at Risk , 1997 .

[26]  F. Longin,et al.  Extreme Correlation of International Equity Markets , 2000 .

[27]  Simone Manganelli,et al.  Value at Risk Models in Finance , 2001, SSRN Electronic Journal.

[28]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[29]  M. Pritsker Evaluating Value at Risk Methodologies: Accuracy versus Computational Time , 1996 .

[30]  Michael W. Brandt,et al.  Range-Based Estimation of Stochastic Volatility Models , 2001 .

[31]  F. Diebold,et al.  How Relevant is Volatility Forecasting for Financial Risk Management? , 1997 .

[32]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[33]  Jesper Andreasen,et al.  Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Pricing , 1999 .

[34]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[35]  Suleyman Basak,et al.  Value-at-Risk Based Risk Management: Optimal Policies and Asset Prices , 1999 .

[36]  J. Duan,et al.  Série Scientifique Scientific Series Empirical Martingale Simulation for Asset Prices Empirical Martingale Simulation for Asset Prices , 2022 .

[37]  Michael J. Brennan,et al.  The Pricing of Contingent Claims in Discrete Time Models , 1979 .

[38]  M. Rubinstein. Implied Binomial Trees , 1994 .

[39]  John M. Olin,et al.  A Closed-Form GARCH Option Pricing Model , 1997 .

[40]  Peter H. Ritchken,et al.  An empirical comparison of GARCH option pricing models , 2006 .

[41]  Jin-Chuan Duan,et al.  An Analytical Approximation for the GARCH Option Pricing Model Journal of Computational Finance , 1999 .

[42]  Jeremy Berkowitz,et al.  How Accurate are Value-at-Risk Models at Commercial Banks , 2001 .

[43]  Jin-Chuan Duan,et al.  American option pricing under GARCH by a Markov chain approximation , 2001 .

[44]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[45]  Mark Rubinstein,et al.  The Valuation of Uncertain Income Streams and the Pricing of Options , 1976 .

[46]  Tim Bollerslev,et al.  COMMON PERSISTENCE IN CONDITIONAL VARIANCES , 1993 .

[47]  J. Duan THE GARCH OPTION PRICING MODEL , 1995 .

[48]  R. Huisman,et al.  Tail-Index Estimates in Small Samples , 2001 .