Logical Constants Across Varying Types

We investigate the notion of «logicality» for arbitrary categories of linguistic expression, viewed as a phenomenon which they can all possess to a greater or lesser degree. Various semantic aspects of logicality are analyzed in technical detail: in particular, invariance for permutations of individual objects, and respect for Boolean structure. We show how such properties are systematically related across different categories, using the apparatus of the typed lambda calculus

[1]  Johan van Benthem,et al.  Tenses in Real Time , 1986, Math. Log. Q..

[2]  J. Benthem Categorial Grammar and Lambda Calculus , 1987 .

[3]  J.F.A.K. van Benthem,et al.  A manual of intensional logic , 1989 .

[4]  C. Pollard,et al.  Center for the Study of Language and Information , 2022 .

[5]  S. Lobner Quantification as a Major Module of Natural Language Semantics in Studies in Discourse Representation Theory and the Theory of Generalized Quantifiers. , 1987 .

[6]  Johan van Benthem,et al.  Foundations of conditional logic , 1984, J. Philos. Log..

[7]  Johan van Benthem,et al.  Towards a Computational Semantics , 1987 .

[8]  Johan van Benthem,et al.  The variety of consequence, according to Bolzano , 1985, Stud Logica.

[9]  Johan van Benthem,et al.  Semantic Parallels in Natural Language and Computation , 1989 .

[10]  Johan van Benthem,et al.  Categorial grammar and type theory , 1990, J. Philos. Log..

[11]  Jeroen Groenendijk,et al.  Studies in discourse, representation theory and the theory of generalized quantifiers , 1987 .

[12]  Johan Benthem Polyadic quantifiers , 1989 .

[13]  Peter Gärdenfors,et al.  Generalized Quantifiers: Linguistic and Logical Approaches , 1981 .

[14]  L. M. Faltz,et al.  Boolean semantics for natural language , 1984 .

[15]  J. Benthem Essays in Logical Semantics , 1986 .

[16]  Johan van Benthem,et al.  Questions About Quantifiers , 1984, J. Symb. Log..

[17]  Johan van Benthem,et al.  A Linguistic Turn: New Directions in Logic , 1986 .

[18]  J.F.A.K. van Benthem Determiners and logic , 1983 .