Calculation of Channeling Effects During Ion Implantation Using the Boltzmann Transport Equation

The Boltzmann transport equation approach for ion implantation simulation has been enhanced to allow the calculation of channeling effects. Simple models are used for scattering into channeling directions and for motion along channels in order to obtain useful results without requiring excessive amounts of computation time. Comparison with experimental profiles show good agreement for boron implantation into <100> and <111> silicon based on experimental values for electronic stopping powers. Where stopping data is not available, parameters can be adjusted to fit the experimental profiles.

[1]  J. Ziegler,et al.  stopping and range of ions in solids , 1985 .

[2]  W. Oldham,et al.  Shallow boron junctions implanted in silicon through a surface oxide , 1984, IEEE Electron Device Letters.

[3]  A. E. Michel,et al.  Channeling in low energy boron ion implantation , 1984 .

[4]  R. Wilson Boron, fluorine, and carrier profiles for B and BF2 implants into crystalline and amorphous Si , 1983 .

[5]  W. Fichtner,et al.  Vectorized Monte Carlo calculation for the transport of ions in amorphous targets , 1983, IEEE Transactions on Electron Devices.

[6]  M. Giles,et al.  A multiple pass application of the Boltzmann transport equation for calculating ion implantation profiles at low energies , 1983 .

[7]  K. Wittmaack,et al.  Low energy range distributions of 10B and 11B in amorphous and crystalline silicon , 1982 .

[8]  James F. Gibbons,et al.  Displacement criterion for amorphization of silicon during ion implantation , 1981 .

[9]  James F. Gibbons,et al.  Stoichiometric disturbances in ion implanted compound semiconductors , 1981 .

[10]  J. Gibbons,et al.  Silver recoil yield resulting from krypton implantation , 1981 .

[11]  R. G. Wilson,et al.  Channeling of 20–800‐keV arsenic ions in the 〈110〉 and the 〈100〉 directions of silicon, and the roles of electronic and nuclear stopping , 1981 .

[12]  J. Gibbons,et al.  Recoil range distributions in multilayered targets , 1981 .

[13]  James F. Gibbons,et al.  An application of the Boltzmann transport equation to ion range and damage distributions in multilayered targets , 1980 .

[14]  J. Biersack,et al.  A Monte Carlo computer program for the transport of energetic ions in amorphous targets , 1980 .

[15]  Mark T. Robinson,et al.  Computer simulation of atomic-displacement cascades in solids in the binary-collision approximation , 1974 .

[16]  M. Robinson Interpretation of Channeled-Ion Energy-Loss Spectra , 1969 .

[17]  G. Leibfried,et al.  Long‐Range Channeling Effects in Irradiated Crystals , 1963 .

[18]  A. Corciovei,et al.  Semiclassical approach to channeling and dechanneling , 1981 .

[19]  L. M. Howe,et al.  A diffusion calculation of axial dechanneling in Si and Ge , 1980 .

[20]  D. R. Myers,et al.  Angular sensitivity of controlled implanted doping profiles , 1978 .

[21]  Y. Martynenko DISTRIBUTION IN PENETRATION DEPTH OF CHANNELED PARTICLES. , 1972 .

[22]  K. B. Winterbon HEAVY-ION RANGE PROFILES AND ASSOCIATED DAMAGE DISTRIBUTIONS. , 1972 .

[23]  D. K. Brice,et al.  ION IMPLANTATION DEPTH DISTRIBUTIONS: ENERGY DEPOSITION INTO ATOMIC PROCESSES AND ION LOCATIONS , 1970 .

[24]  F. Eisen CHANNELING OF MEDIUM-MASS IONS THROUGH SILICON. , 1968 .

[25]  J. Sanders RANGES OF PROJECTILES IN AMORPHOUS MATERIALS. , 1968 .

[26]  O. Firsov Calculation of the Interaction Potential of Atoms , 1958 .