A comparison among stochastic optimization algorithms for parameter estimation of biochemical kinetic models

Mathematical models in biochemical engineering field are usually composed by nonlinear kinetic equations, where the number of parameters that must be estimated from a set of experimental measurements is usually very high. In these cases, the estimation of the model parameters comprises numerical iterative methods for minimization of the objective function. Classical methods for minimization of the objective function, like the Newton method, requires a good initial guess for all parameters and differentiation of the objective function and/or model equations with respect to the model parameters. Besides, the use of stochastic optimization methods for parameter estimation has gained attention, since these methods do not require a good initial guesses of all model parameters and neither the evaluation of derivatives. In this work, some stochastic optimization methods (Artificial Bee Colony, Differential Evolution, Particle Swarm Optimization and Simulated Annealing) were used in the estimation of kinetic parameters of a biochemical model for an alcoholic fermentation of cassava hydrolyzed. The results indicated that Differential Evolution provides better results among the stochastic optimization methods evaluated.

[1]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[2]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[3]  Shu-Kai S. Fan,et al.  A hybrid simplex search and particle swarm optimization for unconstrained optimization , 2007, Eur. J. Oper. Res..

[4]  E. Biscaia,et al.  Nonlinear parameter estimation through particle swarm optimization , 2008 .

[5]  M. Senthil Arumugam,et al.  On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems , 2008, Appl. Soft Comput..

[6]  Sandro Ridella,et al.  Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithmCorrigenda for this article is available here , 1987, TOMS.

[7]  Chun-Pin Tseng,et al.  A new viewpoint on risk control decision models for natural disasters , 2011 .

[8]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[9]  Cheng-Wu Chen,et al.  GA-based decoupled adaptive FSMC for nonlinear systems by a singular perturbation scheme , 2011, Neural Computing and Applications.

[10]  N. Kalogerakis,et al.  Applied parameter estimation for chemical engineers , 2000 .

[11]  William L. Goffe,et al.  SIMANN: FORTRAN module to perform Global Optimization of Statistical Functions with Simulated Annealing , 1992 .

[12]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[13]  KarabogaDervis,et al.  A modified Artificial Bee Colony algorithm for real-parameter optimization , 2012 .

[14]  B. Babu,et al.  Estimation of heat transfer parameters in a trickle-bed reactor using differential evolution and orthogonal collocation , 1999 .

[15]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[16]  Diego Martinez Prata,et al.  Simultaneous robust data reconciliation and gross error detection through particle swarm optimization for an industrial polypropylene reactor , 2010 .

[17]  Cheng-Wu Chen,et al.  Risk and uncertainty analysis in the planning stages of a risk decision-making process , 2012, Natural Hazards.

[18]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[19]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[20]  C. Chen,et al.  Stabilization of adaptive neural network controllers for nonlinear structural systems using a singular perturbation approach , 2011 .

[21]  Michael N. Vrahatis,et al.  Recent approaches to global optimization problems through Particle Swarm Optimization , 2002, Natural Computing.

[22]  Riccardo Leardi,et al.  Genetic algorithms in chemistry. , 2007, Journal of chromatography. A.

[23]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[24]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[25]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[26]  Vadlamani Ravi,et al.  An improved differential evolution method for efficient parameter estimation in biofilter modeling , 2006 .

[27]  G. Froment,et al.  A hybrid genetic algorithm for the estimation of parameters in detailed kinetic models , 1998 .

[28]  Michael G. Epitropakis,et al.  Evolving cognitive and social experience in Particle Swarm Optimization through Differential Evolution: A hybrid approach , 2012, Inf. Sci..

[29]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[30]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[31]  Cheng-Wu Chen,et al.  The stability of an oceanic structure with T-S fuzzy models , 2009, Math. Comput. Simul..

[32]  Diego Martinez Prata,et al.  Nonlinear dynamic data reconciliation and parameter estimation through particle swarm optimization: Application for an industrial polypropylene reactor , 2009 .

[33]  Erwie Zahara,et al.  A hybrid genetic algorithm and particle swarm optimization for multimodal functions , 2008, Appl. Soft Comput..

[34]  Tsuen-Ho Hsu,et al.  Designing a model of FANP in brand image decision-making , 2011, Appl. Soft Comput..

[35]  D. Karaboga,et al.  On the performance of artificial bee colony (ABC) algorithm , 2008, Appl. Soft Comput..

[36]  Yonathan Bard,et al.  Nonlinear parameter estimation , 1974 .

[37]  Chen-Yuan Chen,et al.  Fuzzy Logic Derivation of Neural Network Models with Time Delays in Subsystems , 2005, Int. J. Artif. Intell. Tools.

[38]  U. A. Lima,et al.  Biotecnologia industrial: engenharia bioquímica , 2001 .

[39]  Cheng-Wu Chen,et al.  Stability analysis and robustness design of nonlinear systems: An NN-based approach , 2011, Appl. Soft Comput..

[40]  D. Wolf,et al.  Estimating rate constants of heterogeneous catalytic reactions without supposition of rate determining surface steps — an application of a genetic algorithm , 1997 .

[41]  Azael Fabregat,et al.  Nonlinear kinetic parameter estimation using simulated annealing , 2002 .

[42]  Cheng-Wu Chen,et al.  Stability conditions of fuzzy systems and its application to structural and mechanical systems , 2006, Adv. Eng. Softw..