Symbiosis Between Methanogenic Archaea and δ-Proteobacteria as the Origin of Eukaryotes: The Syntrophic Hypothesis

Abstract. We present a novel hypothesis for the origin of the eukaryotic cell, or eukaryogenesis, based on a metabolic symbiosis (syntrophy) between a methanogenic archaeon (methanobacterial-like) and a δ-proteobacterium (an ancestral sulfate-reducing myxobacterium). This syntrophic symbiosis was originally mediated by interspecies H2 transfer in anaerobic, possibly moderately thermophilic, environments. During eukaryogenesis, progressive cellular and genomic cointegration of both types of prokaryotic partners occurred. Initially, the establishment of permanent consortia, accompanied by extensive membrane development and close cell–cell interactions, led to a highly evolved symbiotic structure already endowed with some primitive eukaryotic features, such as a complex membrane system defining a protonuclear space (corresponding to the archaeal cytoplasm), and a protoplasmic region (derived from fusion of the surrounding bacterial cells). Simultaneously, bacterial-to-archaeal preferential gene transfer and eventual replacement took place. Bacterial genome extinction was thus accomplished by gradual transfer to the archaeal host, where genes adapted to a new genetic environment. Emerging eukaryotes would have inherited archaeal genome organization and dynamics and, consequently, most DNA-processing information systems. Conversely, primordial genes for social and developmental behavior would have been provided by the ancient myxobacterial symbiont. Metabolism would have been issued mainly from the versatile bacterial organotrophy, and progressively, methanogenesis was lost.

[1]  J. R. Brown,et al.  A chimeric origin for eukaryotes re-examined. , 1996, Trends in biochemical sciences.

[2]  S. Casjens,et al.  Linear chromosomes of Lyme disease agent spirochetes: genetic diversity and conservation of gene order , 1995, Journal of bacteriology.

[3]  W. Martin,et al.  Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Fitzharris Tp,et al.  Specific associations of prokaryotes with symbiotic flagellate protozoa from the hindgut of the termite Reticulitermes and the wood-eating roack Cryptocercus. , 1976 .

[5]  R. Fleischmann,et al.  The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.

[6]  G. Blobel,et al.  Intracellular protein topogenesis. , 1980, Progress in clinical and biological research.

[7]  K. Schleifer,et al.  The dissimilatory sulfate- and sulfur-reducing bacteria. , 1992 .

[8]  K. Tilly,et al.  Linear plasmids and chromosomes in bacteria , 1993, Molecular microbiology.

[9]  R. Overbeek,et al.  The winds of (evolutionary) change: breathing new life into microbiology. , 1996, Journal of bacteriology.

[10]  P. Forterre,et al.  Evolution of DNA Topoisomerases and DNA Polymerases: a Perspective from Archaea , 1993 .

[11]  J. Palmer,et al.  Second-hand chloroplasts and the case of the disappearing nucleus. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[12]  G. Church,et al.  Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics , 1997, Journal of bacteriology.

[13]  K. Schleifer,et al.  The aerobic methylotrophic bacteria. , 1992 .

[14]  M. Rosa,et al.  Unique Features of Lipids of Archaea , 1993 .

[15]  S. Pirt,et al.  Conversion of glucose to fatty acids and methane: roles of two mycoplasmal agents , 1981, Journal of bacteriology.

[16]  Robert A. Bloodgood,et al.  Specific associations of prokaryotes with symbiotic flagellate protozoa from the hindgut of the termite Reticulitermes and the wood-eating roack Cryptocercus. , 1976, Cytobios.

[17]  Miklós,et al.  The hydrogenosome , 2022 .

[18]  P. Raven,et al.  ORIGIN OF EUKARYOTIC CELLS , 1971 .

[19]  J. Lake,et al.  Tracing origins with molecular sequences: metazoan and eukaryotic beginnings. , 1991, Trends in biochemical sciences.

[20]  R. Kornberg,et al.  Structure of chromatin. , 1977, Annual review of biochemistry.

[21]  C. Schleper,et al.  A multicopy plasmid of the extremely thermophilic archaeon Sulfolobus effects its transfer to recipients by mating , 1995, Journal of bacteriology.

[22]  P. Forterre Thermoreduction, a hypothesis for the origin of prokaryotes. , 1995, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[23]  C. Woese,et al.  Bacterial evolution , 1987, Microbiological reviews.

[24]  S Kaplan,et al.  Multiple chromosomes in bacteria: structure and function of chromosome II of Rhodobacter sphaeroides 2.4.1T , 1994, Journal of Bacteriology.

[25]  M. Sogin,et al.  A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[26]  H. Reichenbach,et al.  Steroids from the Myxobacterium Nannocystis exedens , 1983 .

[27]  F. Ayala,et al.  Tempo, Mode, the Progenote, and the Universal Root , 1995 .

[28]  B. Lubochinsky,et al.  Stimulation of inositide degradation in clumping Stigmatella aurantiaca , 1994, Journal of bacteriology.

[29]  C. Woese,et al.  Phylogenetic structure of the prokaryotic domain: The primary kingdoms , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[30]  S. Inouye,et al.  Structural similarities between the development-specific protein S from a gram-negative bacterium, Myxococcus xanthus, and calmodulin. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[31]  R. Overbeek,et al.  The winds of (evolutionary) change: breathing new life into microbiology , 1994 .

[32]  L. Karayan,et al.  Presence of one linear and one circular chromosome in the Agrobacterium tumefaciens C58 genome , 1993, Journal of bacteriology.

[33]  T. Cavalier-smith The Origin of Eukaryote and Archaebacterial Cells , 1987, Annals of the New York Academy of Sciences.

[34]  J. Reeve,et al.  Archaeal nucleosomes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[35]  K. Drlica,et al.  Histonelike proteins of bacteria. , 1987, Microbiological reviews.

[36]  Stephen H. Zinder,et al.  Physiological Ecology of Methanogens , 1993 .

[37]  R. Ronimus,et al.  A gene, han1A, encoding an archaeal histone-like protein from the Thermococcus species AN1: homology with eukaryal histone consensus sequences and the implications for delineation of the histone fold. , 1996, Biochimica et biophysica acta.

[38]  W. Doolittle,et al.  A possible mitochondrial gene in the early-branching amitochondriate protist Trichomonas vaginalis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[39]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[40]  D. Reanney On the origin of prokaryotes. , 1974, Journal of theoretical biology.

[41]  V. Ramakrishnan The histone fold: evolutionary questions. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Thomas E Hanson,et al.  Methanotrophic bacteria. , 1996, Microbiological reviews.

[43]  C. Woese,et al.  A phylogenetic analysis of the myxobacteria: basis for their classification. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[44]  R. Fleischmann,et al.  Complete Genome Sequence of the Methanogenic Archaeon, Methanococcus jannaschii , 1996, Science.

[45]  C. Woese,et al.  Phylogenetic Relationships Among the Sulfate Respiring Bacteria, Myxobacteria and Purple Bacteria , 1985 .

[46]  J. Palmer,et al.  RNA-mediated transfer of the gene coxII from the mitochondrion to the nucleus during flowering plant evolution , 1991, Cell.

[47]  L. P. Knauth,et al.  Origin and diagenesis of cherts: An isotopic perspective , 1992 .

[48]  H. Morii,et al.  Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses. , 1993, Microbiological reviews.

[49]  J. Reeve,et al.  Methanobacterium formicicum, a mesophilic methanogen, contains three HFo histones , 1995, Journal of bacteriology.

[50]  A. Nicolas,et al.  An atypical topoisomerase II from archaea with implications for meiotic recombination , 1997, Nature.

[51]  P Forterre,et al.  The unique DNA topology and DNA topoisomerases of hyperthermophilic archaea. , 1996, FEMS microbiology reviews.

[52]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[53]  A. V. Grimstone,et al.  The fine structure of the flagellate Mixotricha paradoxa and its associated micro-organisms , 1964, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[54]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[55]  V. Buchanan-Wollaston,et al.  The mob and oriT mobilization functions of a bacterial plasmid promote its transfer to plants , 1987, Nature.

[56]  JOHN MAYNARD Smith Generating novelty by symbiosis , 1989, Nature.

[57]  F. Taddei,et al.  Highly variable mutation rates in commensal and pathogenic Escherichia coli. , 1997, Science.

[58]  James A. Lake,et al.  Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences , 1988, Nature.

[59]  J. Zlatanova Archaeal chromatin: virtual or real? , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[60]  M. Dworkin,et al.  Light-Induced Lysis and Carotenogenesis in Myxococcus xanthus , 1966, Journal of bacteriology.

[61]  Samuel S. Wu,et al.  Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus , 1995, Molecular microbiology.

[62]  J. Reeve,et al.  Archaeal Histones, Nucleosomes, and Transcription Initiation , 1997, Cell.

[63]  K. Drlica,et al.  Control of bacterial DNA supercoiling , 1992, Molecular microbiology.

[64]  P. J. Johnson,et al.  A common evolutionary origin for mitochondria and hydrogenosomes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[65]  L. Margulis Archaeal-eubacterial mergers in the origin of Eukarya: phylogenetic classification of life. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[66]  R. Gupta,et al.  Cloning of the HSP70 gene from Halobacterium marismortui: relatedness of archaebacterial HSP70 to its eubacterial homologs and a model for the evolution of the HSP70 gene , 1992, Journal of bacteriology.

[67]  R. Huber,et al.  A porin‐type protein is the main constituent of the cell envelope of the ancestral eubacterium Thermotoga maritima , 1990 .

[68]  M. Pagel,et al.  Accelerated evolution as a consequence of transitions to mutualism. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[69]  M. Sogin Early evolution and the origin of eukaryotes , 1991, Current Biology.

[70]  M. Summers,et al.  NMR structure of HMfB from the hyperthermophile, Methanothermus fervidus, confirms that this archaeal protein is a histone. , 1996, Journal of molecular biology.

[71]  G. Green,et al.  A histone-like protein (HTa) from Thermoplasma acidophilum. I. Purification and properties. , 1981, The Journal of biological chemistry.

[72]  J. Wall,et al.  Plasmid transfer by conjugation in Desulfovibrio desulfuricans. , 1992, FEMS microbiology letters.

[73]  R. Delange,et al.  A histone-like protein (HTa) from Thermoplasma acidophilum. II. Complete amino acid sequence. , 1981, The Journal of biological chemistry.

[74]  J. Schopf,et al.  Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life , 1993, Science.

[75]  B. Runnegar,et al.  Megascopic eukaryotic algae from the 2.1-billion-year-old negaunee iron-formation, Michigan. , 1992, Science.

[76]  D. Searcy Phylogenetic and Phenotypic Relationships between the Eukaryotic Nucleocytoplasm and Thermophilic Archaebacteria a , 1987 .

[77]  A. Pospiech,et al.  Size and stability of the genomes of the myxobacteria Stigmatella aurantiaca and Stigmatella erecta , 1992, Journal of bacteriology.

[78]  L. Shimkets,et al.  Genome size of Myxococcus xanthus determined by pulsed-field gel electrophoresis , 1990, Journal of bacteriology.

[79]  Tori M. Hoehler,et al.  Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen‐sulfate reducer consortium , 1994 .

[80]  Y. Koga,et al.  Archaea contain a novel diether phosphoglycolipid with a polar head group identical to the conserved core of eucaryal glycosyl phosphatidylinositol. , 1992, The Journal of biological chemistry.

[81]  R. Whittenbury,et al.  Fine structure of methane and other hydrocarbon-utilizing bacteria. , 1970, Journal of general microbiology.

[82]  M. Chartrain,et al.  Control of Interspecies Electron Flow during Anaerobic Digestion: Role of Floc Formation in Syntrophic Methanogenesis , 1988, Applied and environmental microbiology.

[83]  J. Palmer,et al.  Organelle genomes: going, going, gone! , 1997, Science.

[84]  D. J. Coetzee,et al.  The value of orthogonal-field-alternation gel electrophoresis as a rapid identification process for some species representing the genus Saccharomyces , 1987 .

[85]  R. Huber,et al.  Aquifex pyrophilus gen. nov. sp. nov., Represents a Novel Group of Marine Hyperthermophilic Hydrogen-Oxidizing Bacteria , 1992 .

[86]  S. Inouye,et al.  A gene encoding a protein serine/threonine kinase is required for normal development of M. xanthus, a gram-negative bacterium , 1991, Cell.

[87]  P. Forterre,et al.  The nature of the last universal ancestor and the root of the tree of life, still open questions. , 1992, Bio Systems.

[88]  M W Gray,et al.  The endosymbiont hypothesis revisited. , 1992, International review of cytology.

[89]  R F Doolittle,et al.  Determining divergence times with a protein clock: update and reevaluation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[90]  C. Cavanaugh Symbioses of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. , 1985 .

[91]  T. Blundell,et al.  Myxococcus xanthus spore coat protein S may have a similar structure to vertebrate lens βγ-crystallins , 1985, Nature.

[92]  D. Boucher,et al.  Symbiosis as a source of evolutionary innovation (book review) , 1992 .

[93]  A. Sanangelantoni,et al.  Evolution of translational elongation factor (EF) sequences: reliability of global phylogenies inferred from EF-1 alpha(Tu) and EF-2(G) proteins. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[94]  W. Zillig,et al.  DNA-dependent RNA polymerase from the archaebacterium Sulfolobus acidocaldarius. , 1979, European journal of biochemistry.

[95]  Donald E. Canfield,et al.  Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies , 1996, Nature.

[96]  Y. van de Peer,et al.  Evolution according to large ribosomal subunit RNA. , 1995, Journal of molecular evolution.

[97]  P. Thuriaux,et al.  Transcription in archaea: similarity to that in eucarya. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[98]  M. Dworkin Recent advances in the social and developmental biology of the myxobacteria. , 1996, Microbiological reviews.

[99]  Masasuke Yoshida,et al.  Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[100]  G. B. Golding,et al.  The origin of the eukaryotic cell. , 1996, Trends in biochemical sciences.

[101]  A. Weiner,et al.  Another Bridge between Kingdoms: tRNA Splicing in Archaea and Eukaryotes , 1997, Cell.

[102]  W. Zillig Comparative biochemistry of Archaea and Bacteria. , 1991, Current opinion in genetics & development.

[103]  I. Rosenshine,et al.  The mechanism of DNA transfer in the mating system of an archaebacterium. , 1989, Science.

[104]  M. Kates,et al.  Membrane Lipids of Archaea , 1993 .

[105]  W. M. Huang,et al.  Bacterial diversity based on type II DNA topoisomerase genes. , 1996, Annual review of genetics.

[106]  J. Paillisson,et al.  Presence of two independent chromosomes in the Brucella melitensis 16M genome , 1993, Journal of bacteriology.

[107]  W. Zillig,et al.  DNA-dependent RNA polymerase from Halobacterium halobium. , 1978, European journal of biochemistry.

[108]  J. Reeve,et al.  Archaeal DNA binding proteins and chromosome structure , 1993 .

[109]  P. Forterre,et al.  Both DNA gyrase and reverse gyrase are present in the hyperthermophilic bacterium Thermotoga maritima. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[110]  S. Osawa,et al.  Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[111]  J A Lake,et al.  Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. , 1992, Science.

[112]  J. Zeikus,et al.  Fine structure of Methanospirillum hungatii , 1975, Journal of bacteriology.

[113]  J. Palmer,et al.  RNA-mediated transfer of the gene coxII from the mitochondrion to the nucleus during flowering plant evolution. , 1991, Cell.

[114]  J. Gogarten,et al.  Horizontal transfer of ATPase genes--the tree of life becomes a net of life. , 1993, Bio Systems.

[115]  Bland J. Finlay,et al.  Ecology and evolution in anoxic worlds , 1995 .

[116]  P. Hartzell Complementation of sporulation and motility defects in a prokaryote by a eukaryotic GTPase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[117]  C. Schleper,et al.  Viruses, plasmids and other genetic elements of thermophilic and hyperthermophilic Archaea. , 1996, FEMS microbiology reviews.

[118]  Mitchell L Sogin Early evolution and the origin of eukaryotes , 1992, Current Biology.

[119]  W. Doolittle,et al.  Archaea and the Origin(s) of DNA Replication Proteins , 1997, Cell.

[120]  W. Doolittle,et al.  Evolution: Archaea and eukaryotes versus bacteria? , 1994, Current Biology.

[121]  J A Lake,et al.  Was the nucleus the first endosymbiont? , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[122]  S. Jensen,et al.  Giant linear plasmids of β‐lactam antibiotic producing Streptomyces , 1995 .

[123]  J. Heinemann,et al.  Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast , 1989, Nature.

[124]  M. Thomm Archaeal transcription factors and their role in transcription initiation. , 1996, FEMS microbiology reviews.

[125]  Gary J Olsen,et al.  Archaeal Genomics: An Overview , 1997, Cell.

[126]  M. Parker,et al.  Methanogenesis from Ethanol by Defined Mixed Continuous Cultures , 1989, Applied and environmental microbiology.

[127]  James G. Ferry,et al.  Methanogenesis : Ecology, Physiology, Biochemistry and Genetics , 1994 .

[128]  J. Wall,et al.  Characterization of a small plasmid from Desulfovibrio desulfuricans and its use for shuttle vector construction , 1993, Journal of bacteriology.

[129]  P. Dennis Ancient Ciphers: Translation in Archaea , 1997, Cell.

[130]  F. Perler,et al.  Histone-encoding genes from Pyrococcus: evidence for members of the HMf family of archaeal histones in a non-methanogenic Archaeon. , 1994, Gene.

[131]  W. Martin,et al.  The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis , 1997, Current Genetics.

[132]  D. Searcy,et al.  Thermoplasma acidophilum histone-like protein. Partial amino acid sequence suggestive of homology to eukaryotic histones. , 1980, Biochimica et biophysica acta.

[133]  James R. Brown,et al.  Archaea and the prokaryote-to-eukaryote transition. , 1997, Microbiology and molecular biology reviews : MMBR.

[134]  G. Stacey,et al.  Diversity of retron elements in a population of rhizobia and other gram-negative bacteria , 1993, Journal of bacteriology.

[135]  M E Baker Myxococcus xanthus C-factor, a morphogenetic paracrine signal, is similar to Escherichia coli 3-oxoacyl-[acyl-carrier-protein] reductase and human 17 beta-hydroxysteroid dehydrogenase. , 1994, The Biochemical journal.

[136]  J D Palmer,et al.  The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[137]  P. Mazodier,et al.  Gene transfer between distantly related bacteria. , 1991, Annual review of genetics.

[138]  H. Philippe,et al.  Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[139]  W. Martin,et al.  The hydrogen hypothesis for the first eukaryote , 1998, Nature.

[140]  J. Darnell Implications of RNA-RNA splicing in evolution of eukaryotic cells. , 1978, Science.

[141]  D. Moreira,et al.  Characterization of two new thermoacidophilic microalgae: Genome organization and comparison with Galdieria sulphuraria , 1994 .

[142]  J. Antón,et al.  Sizing chromosomes and megaplasmids in haloarchaea. , 1996, Microbiology.