Existence of traveling wave solutions in a diffusive predator-prey model

Abstract We establish the existence of traveling front solutions and small amplitude traveling wave train solutions for a reaction-diffusion system based on a predator-prey model with Holling type-II functional response. The traveling front solutions are equivalent to heteroclinic orbits in R4 and the small amplitude traveling wave train solutions are equivalent to small amplitude periodic orbits in R4. The methods used to prove the results are the shooting argument and the Hopf bifurcation theorem.

[1]  R. Fisher THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES , 1937 .

[2]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[3]  P. Hartman Ordinary Differential Equations , 1965 .

[4]  Robert M. May,et al.  Stability and Complexity in Model Ecosystems , 2019, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  Paul C. Fife,et al.  Mathematical Aspects of Reacting and Diffusing Systems , 1979 .

[6]  H. I. Freedman Deterministic mathematical models in population ecology , 1982 .

[7]  C. M. Place,et al.  Ordinary Differential Equations , 1982 .

[8]  Steven R. Dunbar,et al.  Travelling wave solutions of diffusive Lotka-Volterra equations , 1983 .

[9]  Steven R. Dunbar,et al.  Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in ⁴ , 1984 .

[10]  R. Gardner,et al.  Existence of Travelling Wave Solutions of Predator–Prey Systems via the Connection Index , 1984 .

[11]  Steven R. Dunbar,et al.  Traveling waves in diffusive predator-prey equations: periodic orbits and point-to-periodic heteroclinic orbits , 1986 .

[12]  Konstantin Mischaikow,et al.  Travelling waves in predator-prey systems , 1993 .

[13]  Vitaly Volpert,et al.  Traveling Wave Solutions of Parabolic Systems , 1994 .

[14]  Stephen A. Gourley,et al.  A predator-prey reaction-diffusion system with nonlocal effects , 1996 .

[15]  Jonathan A. Sherratt,et al.  Oscillations and chaos behind predator–prey invasion: mathematical artifact or ecological reality? , 1997 .

[16]  M A Lewis,et al.  How predation can slow, stop or reverse a prey invasion , 2001, Bulletin of mathematical biology.