Introduction of specialty functions by the position-specific incorporation of nonnatural amino acids into proteins through four-base codon/anticodon pairs

[1]  S. Yokoyama,et al.  Unnatural base pairs for specific transcription , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[2]  P G Schultz,et al.  Expanding the Genetic Code of Escherichia coli , 2001, Science.

[3]  P G Schultz,et al.  Expanding the genetic code: selection of efficient suppressors of four-base codons and identification of “shifty” four-base codons with a library approach in Escherichia coli , 2001, Journal of Molecular Biology.

[4]  D. A. Dougherty,et al.  Unnatural amino acids as probes of protein structure and function. , 2000, Current opinion in chemical biology.

[5]  P. Schultz,et al.  A New Orthogonal Suppressor tRNA/Aminoacyl‐tRNA Synthetase Pair for Evolving an Organism with an Expanded Genetic Code , 2000 .

[6]  F. Romesberg,et al.  Rational Design of an Unnatural Base Pair with Increased Kinetic Selectivity , 2000 .

[7]  T. Ohtsuki,et al.  Dual Specificity of the Pyrimidine Analogue, 4-Methylpyridin-2-one, in DNA Replication , 2000 .

[8]  M. Sisido,et al.  Site-directed incorporation of fluorescent nonnatural amino acids into streptavidin for highly sensitive detection of biotin. , 2000, Biomacromolecules.

[9]  M. Sisido,et al.  Incorporation of Two Different Nonnatural Amino Acids Independently into a Single Protein through Extension of the Genetic Code , 1999 .

[10]  M. Sisido,et al.  Extension of Protein Functions by the Incorporation of Nonnatural Amino Acids , 1999 .

[11]  G. F. Short,et al.  Effects of release factor 1 on in vitro protein translation and the elaboration of proteins containing unnatural amino acids. , 1999, Biochemistry.

[12]  P. Schultz,et al.  Progress toward the evolution of an organism with an expanded genetic code. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  H. Inokuchi,et al.  Co-expression of yeast amber suppressor tRNATyr and tyrosyl-tRNA synthetase in Escherichia coli: possibility to expand the genetic code. , 1998, Journal of biochemistry.

[14]  D. A. Dougherty,et al.  From ab initio quantum mechanics to molecular neurobiology: a cation-pi binding site in the nicotinic receptor. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[15]  R. Furter Expansion of the genetic code: Site‐directed p‐fluoro‐phenylalanine incorporation in Escherichia coli , 1998, Protein science : a publication of the Protein Society.

[16]  J. Szostak,et al.  Structural and kinetic characterization of an acyl transferase ribozyme. , 1998, Journal of the American Chemical Society.

[17]  D A Dougherty,et al.  Site-specific incorporation of biotinylated amino acids to identify surface-exposed residues in integral membrane proteins. , 1997, Chemistry & biology.

[18]  D. A. Dougherty,et al.  Site-specific, photochemical proteolysis applied to ion channels in vivo. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[19]  P. Schultz,et al.  Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins in vivo. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[20]  P. Schultz,et al.  Probing the environment along the protein import pathways in yeast mitochondria by site-specific photocrosslinking. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[21]  A. Chamberlin,et al.  In Vitro Site-Specific Incorporation of Fluorescent Probes into β-Galactosidase , 1997 .

[22]  M. Sisido,et al.  Incorporation of Nonnatural Amino Acids into Streptavidin through In Vitro Frame-Shift Suppression , 1996 .

[23]  H. Lester,et al.  An Engineered Tetrahymena tRNAGln for in Vivo Incorporation of Unnatural Amino Acids into Proteins by Nonsense Suppression* , 1996, The Journal of Biological Chemistry.

[24]  P. Schultz,et al.  Site-specific protein modification using a ketone handle , 1996 .

[25]  S. Hecht,et al.  Firefly Luciferase: Alteration of the Color of Emitted Light Resulting from Substitutions at Position 286 , 1996 .

[26]  J. Szostak,et al.  Ribozyme-catalysed amino-acid transfer reactions , 1996, Nature.

[27]  P. Schultz,et al.  Probing Protein Structure and Function with an Expanded Genetic Code , 1995 .

[28]  Maurille J. Fournier,et al.  Genetically Engineered Fluoropolymers. Synthesis of Repetitive Polypeptides Containing p-Fluorophenylalanine residues , 1994 .

[29]  P. Schultz,et al.  Site-specific incorporation of biophysical probes into proteins. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[30]  S. Yokoyama,et al.  Adaptability of nonnatural aromatic amino acids to the active center of the E. coli ribosomal A site , 1993, FEBS letters.

[31]  D. Tirrell,et al.  Synthesis of a genetically engineered repetitive polypeptide containing periodic selenomethionine residues , 1993 .

[32]  Richard Chamberlin,et al.  Ribosome-mediated incorporation of a non-standard amino acid into a peptide through expansion of the genetic code , 1992, Nature.

[33]  B. Imperiali,et al.  (S)‐α‐Amino‐2,2′‐bipyridine‐6‐propanoic Acid: A Versatile Amino Acid for de Novo Metalloprotein Design. , 1992 .

[34]  P. Schultz,et al.  Construction of a light-activated protein by unnatural amino acid mutagenesis , 1991 .

[35]  Steven A. Benner,et al.  Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet , 1990, Nature.

[36]  Steven A. Benner,et al.  Enzymatic incorporation of a new base pair into DNA and RNA , 1989 .

[37]  C. Glabe,et al.  Biosynthetic site-specific incorporation of a non-natural amino acid into a polypeptide , 1989 .

[38]  P G Schultz,et al.  A general method for site-specific incorporation of unnatural amino acids into proteins. , 1989, Science.

[39]  S. Hecht,et al.  Dipeptide formation with misacylated tRNAPhes. , 1983, The Journal of biological chemistry.

[40]  M. Sisido,et al.  Synthesis of Nonnatural mutants of λ-Cro repressor protein that contain an electron-accepting amino acid , 2000 .

[41]  M. Sisido,et al.  A chiral Eu3+–thienoyltrifluoroacetone complex on an avidin tetramer: luminescence and CD studies on the supramolecular protein–metal chelate complex , 2000 .

[42]  M. Sisido,et al.  Efficient Incorporation of Nonnatural Amino Acids with Large Aromatic Groups into Streptavidin in In Vitro Protein Synthesizing Systems , 1999 .

[43]  A. Chamberlin,et al.  Incorporation of Noncoded Amino Acids by In Vitro Protein Biosynthesis , 1999 .

[44]  G. Turcatti,et al.  Fluorescent labeling of NK2 receptor at specific sites in vivo and fluorescence energy transfer analysis of NK2 ligand-receptor complexes. , 1997, Receptors & channels.

[45]  S. Yoshikawa,et al.  Trisbipyridine Metal Ion’s Nest in Three α-Helix Bundle Structure , 1996 .

[46]  D. Tirrell,et al.  Biosynthesis of a Periodic Protein Containing 3-Thienylalanine: A Step Toward Genetically Engineered Conducting Polymers , 1995 .

[47]  M. Sisido,et al.  Photoswitching of NAD+-mediated enzyme reaction through photoreversible antigen-antibody reaction , 1994 .

[48]  A. Chamberlin,et al.  Site-specific incorporation of non-natural residues into peptides: Effect of residue structure on suppression and translation efficiencies , 1991 .