Equivalent capacitive thickness of the vapor layer below Leidenfrost drops

[1]  Ju-Hyoung Park,et al.  Reducing-Agent-Free Instant Synthesis of Carbon-Supported Pd Catalysts in a Green Leidenfrost Droplet Reactor and Catalytic Activity in Formic Acid Dehydrogenation , 2016, Scientific Reports.

[2]  M. Adda-Bedia,et al.  Inverse Leidenfrost Effect: Levitating Drops on Liquid Nitrogen. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[3]  Jiwoo Hong,et al.  Fast Electrically Driven Capillary Rise Using Overdrive Voltage. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[4]  Milan Hnizdil,et al.  Effects of oxide layer on Leidenfrost temperature during spray cooling of steel at high temperatures , 2015 .

[5]  Monojit Chakraborty,et al.  Electrowetting of partially wetting thin nanofluid films. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[6]  H. Tsao,et al.  Ultralow voltage irreversible electrowetting dynamics of an aqueous drop on a stainless steel surface. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[7]  D. Alexander,et al.  Effects of droplet diameter on the Leidenfrost temperature of laser processed multiscale structured surfaces , 2014, Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm).

[8]  P. Colinet,et al.  Organization of microbeads in Leidenfrost drops. , 2014, Soft matter.

[9]  K. Varanasi,et al.  Increasing Leidenfrost point using micro-nano hierarchical surface structures , 2013 .

[10]  M. Elbahri,et al.  Green chemistry and nanofabrication in a levitated Leidenfrost drop , 2013, Nature Communications.

[11]  P. Stephan,et al.  Influence of the governing dimensionless parameters on heat transfer during single drop impingement onto a hot wall , 2013 .

[12]  Craig Zuhlke,et al.  Extraordinary shifts of the Leidenfrost temperature from multiscale micro/nanostructured surfaces. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[13]  Ronald J. Adrian,et al.  Leidenfrost Dynamics , 2013 .

[14]  Wei Sun,et al.  Mechanism study of condensed drops jumping on super-hydrophobic surfaces , 2012 .

[15]  Y. Pomeau,et al.  The Leidenfrost effect: From quasi-spherical droplets to puddles , 2012, 1208.2509.

[16]  Y. Pomeau,et al.  Take off of small Leidenfrost droplets. , 2012, Physical review letters.

[17]  F. Celestini,et al.  Effect of an electric field on a Leidenfrost droplet , 2012, 1203.4799.

[18]  S. Nagel,et al.  Geometry of the vapor layer under a leidenfrost drop. , 2012, Physical review letters.

[19]  D. Lohse,et al.  Drop impact on superheated surfaces. , 2011, Physical review letters.

[20]  C. Clanet,et al.  Trapping leidenfrost drops with crenelations. , 2011, Physical review letters.

[21]  Christophe Clanet,et al.  Leidenfrost on a ratchet , 2011 .

[22]  C. Tropea,et al.  Nonisothermal drop impact and evaporation on polymer nanofiber mats. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  L. Balan,et al.  Aqueous dispersions of core/shell CdSe/CdS quantum dots as nanofluids for electrowetting , 2011 .

[24]  T. Roques-carmes,et al.  Playing with water drops: from wetting to optics through electrostatics , 2011 .

[25]  A. Yarin,et al.  Thorny devil nanotextured fibers: the way to cooling rates on the order of 1 kW/cm2. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[26]  C. Tropea,et al.  Drop impact, spreading, splashing, and penetration into electrospun nanofiber mats. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[27]  J. Commenge,et al.  Use of surfactants to reduce the driving voltage of switchable optical elements based on electrowetting. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[28]  J. Eggers,et al.  Maximum size of drops levitated by an air cushion. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  John C. Adams,et al.  An Attempt to Test the Theories of Capillary Action: By Comparing the Theoretical and Measured Forms of Drops of Fluid , 2007 .

[30]  B. Alemán,et al.  Self-propelled Leidenfrost droplets. , 2006, Physical review letters.

[31]  Robert A. Hayes,et al.  The effect of the oil/water interfacial tension on electrowetting driven fluid motion , 2005 .

[32]  J. Baret,et al.  Electrowetting: from basics to applications , 2005 .

[33]  B. J. Feenstra,et al.  Video-speed electronic paper based on electrowetting , 2003, Nature.

[34]  Anne-Laure Biance Leidenfrost drops , 2003 .

[35]  John D. Bernardin,et al.  The Leidenfrost point : Experimental study and assessment of existing models , 1999 .

[36]  Mwj Menno Prins,et al.  Contact angles and wetting velocity measured electrically , 1999 .

[37]  A. R. H. Goodwin,et al.  A Database for the Static Dielectric Constant of Water and Steam , 1995 .

[38]  S. Chandra,et al.  Leidenfrost Evaporation of Liquid Nitrogen Droplets , 1994 .

[39]  S. Nishio,et al.  Leidenfrost temperature on an extremely smooth surface , 1993 .

[40]  Michiyoshi Itaru,et al.  The behavior of a water droplet on heated surfaces , 1984 .

[41]  E. Schlunder Heat exchanger design handbook , 1983 .

[42]  M. Uematsu,et al.  Static Dielectric Constant of Water and Steam , 1980 .