Ligand-Free, Colloidal, and Plasmonic Silicon Nanocrystals Heavily Doped with Boron

Colloidal heavily doped silicon nanocrystals (Si NCs) exhibiting tunable localized surface plasmon resonance (LSPR) are of great interest in cost-effective, solution-processed optoelectronic devices given the abundance and nontoxicity of Si. In this work we show that tunable plasmonic properties and colloidal stability without the use of ligands can be simultaneously obtained for Si NCs heavily doped with boron (B). The heavily B-doped Si NC colloids are found to be stable in air for months, opening up the possibility of device processing in ambient atmosphere. The optical absorption of heavily B-doped Si NCs reveals that the heavy B doping not only changes the concentration of free carriers that are confined in Si NCs but also modifies the band structure of Si NCs. After heavy B doping both indirect and direct electronic transition energies remarkably decrease in Si NCs because the heavy B doping induced movement of the conduction band toward the band gap could be more significant than that of the Fermi ...

[1]  J. Tauc,et al.  Optical properties and electronic structure of amorphous Ge and Si , 1968 .

[2]  P. Jain,et al.  Plasmon Resonances of Semiconductor Nanocrystals: Physical Principles and New Opportunities. , 2014, The journal of physical chemistry letters.

[3]  Mark T Swihart,et al.  Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. , 2014, Chemical Society reviews.

[4]  Al-Amin Dhirani,et al.  Charge transport in nanoparticle assemblies. , 2008, Chemical reviews.

[5]  E. Aydil,et al.  Formation of Copper Zinc Tin Sulfide Thin Films from Colloidal Nanocrystal Dispersions via Aerosol-Jet Printing and Compaction. , 2015, ACS applied materials & interfaces.

[6]  Uwe R. Kortshagen,et al.  Plasma‐Assisted Synthesis of Silicon Nanocrystal Inks , 2007 .

[7]  T. Nozaki,et al.  Synthesis and oxidation of luminescent silicon nanocrystals from silicon tetrachloride by very high frequency nonthermal plasma , 2011, Nanotechnology.

[8]  U. Kortshagen,et al.  Absolute absorption cross sections of ligand-free colloidal germanium nanocrystals , 2012 .

[9]  Stephan Lüttjohann,et al.  Silicon nanoparticles: Absorption, emission, and the nature of the electronic bandgap , 2007 .

[10]  Yadong Yin,et al.  Colloidal nanocrystal synthesis and the organic–inorganic interface , 2005, Nature.

[11]  L. Wheeler,et al.  Hypervalent surface interactions for colloidal stability and doping of silicon nanocrystals , 2013, Nature Communications.

[12]  S. Campbell,et al.  Doping efficiency, dopant location, and oxidation of Si nanocrystals , 2008 .

[13]  X. Blase,et al.  Superconducting group-IV semiconductors. , 2009, Nature materials.

[14]  M. Green,et al.  Band edge optical absorption in intrinsic silicon: Assessment of the indirect transition and disorder models , 1993 .

[15]  B. Johansson,et al.  Doping-induced bandgap narrowing in Si rich n- and p-type Si1−x Gex , 2003 .

[16]  T. Nozaki,et al.  Doped silicon nanocrystals from organic dopant precursor by a SiCl4-based high frequency nonthermal plasma , 2014 .

[17]  U. Kortshagen,et al.  Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance. , 2013, Nano letters.

[18]  James R. Heath,et al.  Covalency in semiconductor quantum dots , 1998 .

[19]  Barbara K. Hughes,et al.  Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. , 2008, Journal of the American Chemical Society.

[20]  Lloyd L. Chase,et al.  Changes in the Electronic Properties of Si Nanocrystals as a Function of Particle Size , 1998 .

[21]  H. Sugimoto,et al.  Size and dopant-concentration dependence of photoluminescence properties of ion-implanted phosphorus- and boron-codoped Si nanocrystals , 2015 .

[22]  Manuel Cardona,et al.  Effect of heavy doping on the optical properties and the band structure of silicon , 1984 .

[23]  T. Nozaki,et al.  Boron‐ and Phosphorus‐Hyperdoped Silicon Nanocrystals , 2015 .

[24]  B. Hsieh,et al.  Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy , 1996 .

[25]  Xiaodong Pi,et al.  Spin-coating silicon-quantum-dot ink to improve solar cell efficiency , 2011 .

[26]  J. Veinot,et al.  Synthesis, surface functionalization, and properties of freestanding silicon nanocrystals. , 2006, Chemical communications.

[27]  A Paul Alivisatos,et al.  Localized surface plasmon resonances arising from free carriers in doped quantum dots. , 2011, Nature materials.

[28]  Deren Yang,et al.  Enhancing the Efficiency of Multicrystalline Silicon Solar Cells by the Inkjet Printing of Silicon-Quantum-Dot Ink , 2012 .

[29]  U. Kortshagen,et al.  Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus. , 2015, Nano letters.

[30]  Thomas A. Kennedy,et al.  Doping semiconductor nanocrystals , 2005, Nature.

[31]  S. Campbell,et al.  Room-temperature atmospheric oxidation of Si nanocrystals after HF etching , 2007 .

[32]  J. Chelikowsky,et al.  Electron affinities and ionization energies in Si and Ge nanocrystals , 2004 .

[33]  X. Pi,et al.  Tight-binding calculations of the optical response of optimally P-doped Si nanocrystals: a model for localized surface plasmon resonance. , 2013, Physical review letters.

[34]  Yi Ding,et al.  Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals. , 2015, ACS nano.

[35]  Carrier transport in films of alkyl-ligand-terminated silicon nanocrystals , 2014, 1401.6713.

[36]  N. Dimitrijević,et al.  Dynamic Burstein-Moss shift in semiconductor colloids , 1989 .

[37]  Dmitri V Talapin,et al.  PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors , 2005, Science.

[38]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[39]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[40]  H. C. de Graaff,et al.  Measurements of bandgap narrowing in Si bipolar transistors , 1976 .

[41]  U. Kortshagen,et al.  High-yield plasma synthesis of luminescent silicon nanocrystals. , 2005, Nano letters.

[42]  Allan,et al.  Theoretical aspects of the luminescence of porous silicon. , 1993, Physical review. B, Condensed matter.

[43]  P. Prasad,et al.  Creating ligand-free silicon germanium alloy nanocrystal inks. , 2011, ACS nano.

[44]  A. Rogalski Infrared detectors: status and trends , 2003 .

[45]  T. Nozaki,et al.  Optical extinction spectra of silicon nanocrystals: size dependence upon the lowest direct transition. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[46]  Daniel R. Gamelin,et al.  Electronic doping and redox-potential tuning in colloidal semiconductor nanocrystals. , 2015, Accounts of chemical research.

[47]  A Paul Alivisatos,et al.  Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. , 2012, Journal of the American Chemical Society.

[48]  Masayuki Kanehara,et al.  Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. , 2009, Journal of the American Chemical Society.

[49]  H. Sugimoto,et al.  Phosphorus and Boron Codoped Colloidal Silicon Nanocrystals with Inorganic Atomic Ligands , 2013 .

[50]  J. Valenta,et al.  Direct Bandgap Silicon: Tensile‐Strained Silicon Nanocrystals , 2014 .

[51]  M. Stutzmann,et al.  Low‐Cost Post‐Growth Treatments of Crystalline Silicon Nanoparticles Improving Surface and Electronic Properties , 2012 .

[52]  Jesus A. del Alamo,et al.  Band‐gap narrowing in heavily doped silicon: A comparison of optical and electrical data , 1988 .

[53]  D. Ginley,et al.  Low-cost inorganic solar cells: from ink to printed device. , 2010, Chemical reviews.

[54]  U. Kortshagen,et al.  Nanocrystal inks without ligands: stable colloids of bare germanium nanocrystals. , 2011, Nano letters.

[55]  J. Slotboom,et al.  Unified apparent bandgap narrowing in n- and p-type silicon , 1992 .

[56]  R. Ulbrich,et al.  Electronic disorder of P- and B-doped Si at the metal–insulator transition investigated by scanning tunnelling microscopy and electronic transport , 2013 .

[57]  Raffaella Buonsanti,et al.  Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. , 2011, Nano letters.

[58]  John A Rogers,et al.  High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. , 2015, Nano letters.

[59]  Deren Yang,et al.  First-Principles Study of 2.2 nm Silicon Nanocrystals Doped with Boron , 2011 .

[60]  X. Hou,et al.  Energy band lineup at the porous‐silicon/silicon heterointerface measured by electron spectroscopy , 1994 .

[61]  Matt Law,et al.  Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. , 2008, ACS nano.

[62]  S. Kauzlarich,et al.  Functionalization of Silicon Nanoparticles via Silanization: Alkyl, Halide and Ester , 2008 .

[63]  Ken Okazaki,et al.  Microplasma synthesis of tunable photoluminescent silicon nanocrystals , 2007 .

[64]  Coordination Number of Doped Boron Atoms in Photochemically-Deposited Amorphous Silicon Studied by X-Ray Photoelectron Spectroscopy , 1986 .

[65]  Naoki Fukata,et al.  Doping and characterization of boron atoms in nanocrystalline silicon particles , 2009 .

[66]  Sung-Hoon Lee,et al.  Strain-driven electronic band structure modulation of si nanowires. , 2008, Nano letters.