Effect of salinity on the biosynthesis of amines in Litopenaeus vannamei and the expression of gill related ion transporter genes

[1]  De-bin Zheng,et al.  Effects of injection of biogenic amines on expression of gill related ion transporter mRNA and alpha-subunit protein in Litopenaeus vannamei. , 2009, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[2]  H. Onken,et al.  A structure-function analysis of ion transport in crustacean gills and excretory organs. , 2008, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[3]  L. Pan,et al.  Effects of salinity and pH on ion-transport enzyme activities, survival and growth of Litopenaeus vannamei postlarvae , 2007 .

[4]  S. Hirose,et al.  Expression of endocrine genes in zebrafish larvae in response to environmental salinity. , 2007, The Journal of endocrinology.

[5]  C. Kuo,et al.  Norepinephrine induces transient modulation of the physiological responses of whiteleg shrimp, Litopenaeus vannamei , 2006 .

[6]  Mihaela Senek,et al.  Induction of branchial ion transporter mRNA expression during acclimation to salinity change in the euryhaline crab Chasmagnathus granulatus , 2005, Journal of Experimental Biology.

[7]  P. Edomi,et al.  Role of biogenic amines and cHH in the crustacean hyperglycemic stress response , 2005, Journal of Experimental Biology.

[8]  M. Tresguerres,et al.  Modulation of ion uptake across posterior gills of the crab Chasmagnathus granulatus by dopamine and cAMP. , 2004, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[9]  D. Lightner,et al.  A dietary modification approach to improve the osmoregulatory capacity of Litopenaeus vannamei cultured in the Arizona desert , 2004 .

[10]  D. Davis,et al.  Suitability studies of inland well waters for Litopenaeus vannamei culture , 2003 .

[11]  A. Tierney,et al.  Dopamine in crayfish and other crustaceans: Distribution in the central nervous system and physiological functions , 2003, Microscopy research and technique.

[12]  Ji Ling Mo,et al.  ACTIVE ABSORPTION OF CL– AND NA+ IN POSTERIOR GILLS OF CHINESE CRAB ERIOCHEIR SINENSIS: MODULATION BY DOPAMINE AND cAMP , 2003 .

[13]  D. Towle,et al.  Active ammonia excretion across the gills of the green shore crab Carcinus maenas: participation of Na(+)/K(+)-ATPase, V-type H(+)-ATPase and functional microtubules. , 2002, The Journal of experimental biology.

[14]  C. Cann-Moisan,et al.  POLYAMINES, INDOLAMINES, AND CATECHOLAMINES IN GILLS AND HAEMOLYMPH OF THE EURYHALINE CRAB, ERIOCHEIR SINENSIS. EFFECTS OF HIGH PRESSURE AND SALINITY , 2002 .

[15]  D. Towle,et al.  Na(+)+K(+)-ATPase in gills of the blue crab Callinectes sapidus: cDNA sequencing and salinity-related expression of alpha-subunit mRNA and protein. , 2001, The Journal of experimental biology.

[16]  S. Morris,et al.  Neuroendocrine regulation of osmoregulation and the evolution of air-breathing in decapod crustaceans. , 2001, The Journal of experimental biology.

[17]  A. Bianchini,et al.  Gill Na(+),K(+)-ATPase and osmoregulation in the estuarine crab, Chasmagnathus granulata Dana, 1851 (Decapoda, Grapsidae). , 2001, Journal of experimental marine biology and ecology.

[18]  G. Charmantier,et al.  Involvement of crustacean hyperglycemic hormone in the control of gill ion transport in the crab Pachygrapsus marmoratus. , 2000, General and comparative endocrinology.

[19]  O. Eroldoğan,et al.  Effects of temperature and salinity on larval growth, survival and development of Penaeus semisulcatus. , 2000 .

[20]  M. Devescovi,et al.  Osmoregulation and branchial Na+,K+ -ATPase in the lobster Homarus gammarus acclimated to dilute seawater , 1999 .

[21]  P. Devos,et al.  Dopamine as a Modulator of Ionic Transport and Na+/k+-atpase Activity in the Gills of the Chinese Crab Eriocheir Sinensis , 1998 .

[22]  H. Onken,et al.  NaCl absorption across split gill lamellae of hyperregulating crabs: Transport mechanisms and their regulation , 1998 .

[23]  D. Towle,et al.  Sodium/proton antiporter in the euryhaline crab Carcinus maenas: molecular cloning, expression and tissue distribution. , 1997, The Journal of experimental biology.

[24]  G. Brichon,et al.  Does sphingomyelin participate in signal transduction in gill cells of euryhalin crabs during salinity changes , 1996 .

[25]  S. Morris,et al.  Control of osmoregulation via regulation of Na+K+-ATPase activity in the amphibious purple shore crab Leptograpsus variegatus , 1995 .

[26]  J. Rosa,et al.  Neuroendocrine control of osmotic regulation in the freshwater shrimp Macrobrachium olfersii (Wiegmann) (Crustacea, decapoda): free amino acid concentrations in the hemolymph. , 1995, General and Comparative Endocrinology.

[27]  D. Siebers,et al.  Cl− influx across posterior gills of the Chinese crab (Eriocheir sinensis): potential energization by a V-type H+-ATPase , 1995 .

[28]  Onken,et al.  A V-ATPase drives active, electrogenic and Na+-independent Cl- absorption across the gills of Eriocheir sinensis , 1995, The Journal of experimental biology.

[29]  A. Péqueux,et al.  OSMOTIC REGULATION IN CRUSTACEANS , 1995 .

[30]  S. Watts,et al.  Changes in polyamine levels in response to acclimation salinity in gills of the blue crab Callinectes sapidus rathbun , 1995 .

[31]  L. Mantel,et al.  Effects of dopamine and acclimation to reduced salinity on the concentration of cyclic AMP in the gills of the green crab, Carcinus maenas (L). , 1991, General and comparative endocrinology.

[32]  P. Zatta Dopamine, noradrenaline and serotonin during hypo-osmotic stress of Carcinus maenas , 1987 .

[33]  A. Lawrence,et al.  Practical Molt Staging of Penaeus setiferus and Penaeus stylirostris , 1987 .

[34]  M. Jones,et al.  Synergistic effects of salinity, temperature and heavy metals on mortality and osmoregulation in marine and estuarine isopods (Crustacea) , 1975 .