Stochastic model construction of observed random phenomena
暂无分享,去创建一个
[1] P. Spanos,et al. Monte Carlo Treatment of Random Fields: A Broad Perspective , 1998 .
[2] George Deodatis,et al. Simulation of homogeneous nonGaussian stochastic vector fields , 1998 .
[3] Morten Nielsen,et al. Simulation of inhomogeneous, non-stationary and non-Gaussian turbulent winds , 2007 .
[4] F. Poirion. Numerical Simulation Of Homogeneous Non-Gaussian Random Vector Fields , 1993 .
[5] J. Ramsay,et al. Principal components analysis of sampled functions , 1986 .
[6] Christian Soize,et al. Non-Gaussian simulation using Hermite polynomial expansion: convergences and algorithms , 2002 .
[7] Christian Soize,et al. A computational inverse method for identification of non-Gaussian random fields using the Bayesian approach in very high dimension , 2011, Computer Methods in Applied Mechanics and Engineering.
[8] Irmela Zentner,et al. Non-Gaussian non-stationary models for natural hazard modeling , 2013 .
[9] M. Hobson,et al. Simulation of non-Gaussian cosmic microwave background maps , 2005 .
[10] L. Devroye,et al. Nonparametric Density Estimation: The L 1 View. , 1985 .
[11] M. Priestley. Evolutionary Spectra and Non‐Stationary Processes , 1965 .
[12] J. Dauxois,et al. Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference , 1982 .
[13] Roger G. Ghanem,et al. Asymptotic Sampling Distribution for Polynomial Chaos Representation of Data: A Maximum Entropy and Fisher information approach , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.
[14] B. Silverman. Density estimation for statistics and data analysis , 1986 .
[15] Irmela Zentner,et al. Enrichment of seismic ground motion databases using Karhunen–Loève expansion , 2012 .
[16] Marc Prevosto,et al. Bivariate simulation of non stationary and non Gaussian observed processes: Application to sea state parameters , 2000 .
[17] K. Karhunen. Zur Spektraltheorie stochastischer prozesse , 1946 .
[18] Christian Soize,et al. Identification of high-dimension polynomial chaos expansions with random coefficients for non-Gaussian tensor-valued random fields using partial and limited experimental data , 2010 .
[19] Roger G. Ghanem,et al. Polynomial chaos representation of spatio-temporal random fields from experimental measurements , 2009, J. Comput. Phys..
[20] Roger Ghanem,et al. Simulation of multi-dimensional non-gaussian non-stationary random fields , 2002 .
[21] L. Devroye,et al. Nonparametric density estimation : the L[1] view , 1987 .
[22] Marc Prevosto,et al. Survey of stochastic models for wind and sea state time series , 2007 .
[23] Pol D. Spanos,et al. MA to ARMA modeling of wind , 1990 .
[24] P. Besse. Approximation spline de l'analyse en composantes principales d'une variable aléatoire hilbertienne , 1991 .
[25] Paolo Bocchini,et al. Critical review and latest developments of a class of simulation algorithms for strongly non-Gaussian random fields , 2008 .
[26] Ying Sun,et al. Assessment of Chaotic Parameters in Nonstationary Electrocardiograms by Use of Empirical Mode Decomposition , 2004, Annals of Biomedical Engineering.
[27] Todd L. Walton,et al. Simulation of Nonstationary, Non‐Gaussian Water Levels on Great Lakes , 1990 .
[28] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[29] Finn Gunnar Nielsen,et al. Seasonal Modeling of Multivariate Distributions of Metocean Parameters With Application to Marine Operations , 2004 .
[30] D. W. Scott,et al. Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .
[31] A. A. Gusev,et al. Peak factors of Mexican accelerograms: Evidence of a non-Gaussian amplitude distribution , 1996 .