Stochastic model construction of observed random phenomena

Abstract A method for constructing probabilistic models of non-stationary time dependent natural hazards is proposed. It is based on the use of Karhunen–Loeve expansion and of a kernel estimator for the distribution of the multivariate random variables appearing in the expansion. The terms of the expansion and the distribution are identified from available measures. The approach is assessed through an academic example and is then applied to seismic ground motion modelling based on recorded data.

[1]  P. Spanos,et al.  Monte Carlo Treatment of Random Fields: A Broad Perspective , 1998 .

[2]  George Deodatis,et al.  Simulation of homogeneous nonGaussian stochastic vector fields , 1998 .

[3]  Morten Nielsen,et al.  Simulation of inhomogeneous, non-stationary and non-Gaussian turbulent winds , 2007 .

[4]  F. Poirion Numerical Simulation Of Homogeneous Non-Gaussian Random Vector Fields , 1993 .

[5]  J. Ramsay,et al.  Principal components analysis of sampled functions , 1986 .

[6]  Christian Soize,et al.  Non-Gaussian simulation using Hermite polynomial expansion: convergences and algorithms , 2002 .

[7]  Christian Soize,et al.  A computational inverse method for identification of non-Gaussian random fields using the Bayesian approach in very high dimension , 2011, Computer Methods in Applied Mechanics and Engineering.

[8]  Irmela Zentner,et al.  Non-Gaussian non-stationary models for natural hazard modeling , 2013 .

[9]  M. Hobson,et al.  Simulation of non-Gaussian cosmic microwave background maps , 2005 .

[10]  L. Devroye,et al.  Nonparametric Density Estimation: The L 1 View. , 1985 .

[11]  M. Priestley Evolutionary Spectra and Non‐Stationary Processes , 1965 .

[12]  J. Dauxois,et al.  Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference , 1982 .

[13]  Roger G. Ghanem,et al.  Asymptotic Sampling Distribution for Polynomial Chaos Representation of Data: A Maximum Entropy and Fisher information approach , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[14]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[15]  Irmela Zentner,et al.  Enrichment of seismic ground motion databases using Karhunen–Loève expansion , 2012 .

[16]  Marc Prevosto,et al.  Bivariate simulation of non stationary and non Gaussian observed processes: Application to sea state parameters , 2000 .

[17]  K. Karhunen Zur Spektraltheorie stochastischer prozesse , 1946 .

[18]  Christian Soize,et al.  Identification of high-dimension polynomial chaos expansions with random coefficients for non-Gaussian tensor-valued random fields using partial and limited experimental data , 2010 .

[19]  Roger G. Ghanem,et al.  Polynomial chaos representation of spatio-temporal random fields from experimental measurements , 2009, J. Comput. Phys..

[20]  Roger Ghanem,et al.  Simulation of multi-dimensional non-gaussian non-stationary random fields , 2002 .

[21]  L. Devroye,et al.  Nonparametric density estimation : the L[1] view , 1987 .

[22]  Marc Prevosto,et al.  Survey of stochastic models for wind and sea state time series , 2007 .

[23]  Pol D. Spanos,et al.  MA to ARMA modeling of wind , 1990 .

[24]  P. Besse Approximation spline de l'analyse en composantes principales d'une variable aléatoire hilbertienne , 1991 .

[25]  Paolo Bocchini,et al.  Critical review and latest developments of a class of simulation algorithms for strongly non-Gaussian random fields , 2008 .

[26]  Ying Sun,et al.  Assessment of Chaotic Parameters in Nonstationary Electrocardiograms by Use of Empirical Mode Decomposition , 2004, Annals of Biomedical Engineering.

[27]  Todd L. Walton,et al.  Simulation of Nonstationary, Non‐Gaussian Water Levels on Great Lakes , 1990 .

[28]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[29]  Finn Gunnar Nielsen,et al.  Seasonal Modeling of Multivariate Distributions of Metocean Parameters With Application to Marine Operations , 2004 .

[30]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[31]  A. A. Gusev,et al.  Peak factors of Mexican accelerograms: Evidence of a non-Gaussian amplitude distribution , 1996 .