Visual summation in night-flying sweat bees: A theoretical study

Bees are predominantly diurnal; only a few groups fly at night. An evolutionary limitation that bees must overcome to inhabit dim environments is their eye type: bees possess apposition compound eyes, which are poorly suited to vision in dim light. Here, we theoretically examine how nocturnal bees Megalopta genalis fly at light levels usually reserved for insects bearing more sensitive superposition eyes. We find that neural summation should greatly increase M. genalis's visual reliability. Predicted spatial summation closely matches the morphology of laminal neurons believed to mediate such summation. Improved reliability costs acuity, but dark adapted bees already suffer optical blurring, and summation further degrades vision only slightly.

[1]  I. Meinertzhagen,et al.  The lamina monopolar cells in the optic lobe of the dragonfly sympetrum , 1982 .

[2]  Eric J. Warrant,et al.  Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis , 2004, Cell and Tissue Research.

[3]  Vision Research , 1961, Nature.

[4]  D. Fletcher The African Bee, Apis Mellifera Adansonii, in Africa , 1978 .

[5]  M. Sanders Handbook of Sensory Physiology , 1975 .

[6]  H. Vries The quantum character of light and its bearing upon threshold of vision, the differential sensitivity and visual acuity of the eye , 1943 .

[7]  Allan W. Snyder,et al.  Acuity of compound eyes: Physical limitations and design , 2004, Journal of comparative physiology.

[8]  N. Strausfeld The organization of the insect visual system (Light microscopy) , 1971, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[9]  A. Stockman,et al.  The field adaptation of the human rod visual system. , 1992, The Journal of physiology.

[10]  Eric J. Warrant,et al.  A neural network to improve dim-light vision? Dendritic fields of first-order interneurons in the nocturnal bee Megalopta genalis , 2005, Cell and Tissue Research.

[11]  Eric J. Warrant,et al.  Absorption of white light in photoreceptors , 1998, Vision Research.

[12]  Eric J. Warrant,et al.  Neural organisation in the first optic ganglion of the nocturnal bee Megalopta genalis , 2004, Cell and Tissue Research.

[13]  Boschek Cb On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. , 1971 .

[14]  A. Snyder,et al.  Transduction as a limitation on compound eye function and design , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[15]  B. Hölldobler Canopy orientation: a new kind of orientation in ants. , 1980, Science.

[16]  Eric Warrant,et al.  Vision in the dimmest habitats on Earth , 2004, Journal of Comparative Physiology A.

[17]  S B Laughlin,et al.  Intrinsic noise in locust photoreceptors. , 1982, The Journal of physiology.

[18]  N. Strausfeld,et al.  The optic lobes of Lepidoptera. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[19]  P. Lillywhite,et al.  Single photon signals and transduction in an insect eye , 2004, Journal of comparative physiology.

[20]  Eric J. Warrant,et al.  Nocturnal Vision and Landmark Orientation in a Tropical Halictid Bee , 2004, Current Biology.

[21]  Eric J. Warrant,et al.  Neural Image Enhancement Allows Honeybees to See at Night , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[22]  S. Laughlin Neural Principles in the Peripheral Visual Systems of Invertebrates , 1981 .

[23]  W. Wcislo,et al.  Dominant-subordinate relationships in a facultatively social, nocturnal bee, Megalopta genalis (Hymenoptera: Halictidae) , 2003 .

[24]  S. Laughlin A Simple Coding Procedure Enhances a Neuron's Information Capacity , 1981, Zeitschrift fur Naturforschung. Section C, Biosciences.

[25]  D. Stavenga,et al.  Simple exponential functions describing the absorbance bands of visual pigment spectra , 1993, Vision Research.

[26]  C. Enroth-Cugell,et al.  Chapter 9 Visual adaptation and retinal gain controls , 1984 .

[27]  Eric J. Warrant,et al.  Light intensity limits foraging activity in nocturnal and crepuscular bees , 2006 .

[28]  S. Laughlin,et al.  Transducer noise in a photoreceptor , 1979, Nature.

[29]  N. J. Strausfeld,et al.  The organization of the insect visual system (Light microscopy) , 1971, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[30]  Victor H. Gonzalez,et al.  The evolution of nocturnal behaviour in sweat bees, Megalopta genalis and M. ecuadoria (Hymenoptera: Halictidae): an escape from competitors and enemies? , 2004 .

[31]  G. Bruce Boschek,et al.  On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[32]  D. Pelli The quantum efficiency of vision , 1990 .

[33]  Gary D. Bernard,et al.  The effect of motion on visual acuity of the compound eye: A theoretical analysis , 1975, Vision Research.

[34]  T. Goldsmith,et al.  The visual pigment and visual cycle of the lobster,Homarus , 2004, Journal of comparative physiology.

[35]  R. Jander,et al.  Allometry and resolution of bee eyes (Apoidea). , 2002, Arthropod structure & development.

[36]  Colin Blakemore,et al.  Vision: Coding and Efficiency , 1991 .

[37]  J. H. van Hateren,et al.  Three modes of spatiotemporal preprocessing by eyes , 1993, Journal of Comparative Physiology A.

[38]  E. Warrant Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation , 1999, Vision Research.

[39]  A. Rose,et al.  The Relative Sensitivities of Television Pickup Tubes, Photographic Film, and the Human Eye , 1942, Proceedings of the IRE.

[40]  F. Dyer Nocturnal orientation by the Asian honey bee, Apis dorsata , 1985, Animal Behaviour.