Design optimization of a 2D blade by means of milling tool path

In a conventional design and manufacturing process, turbine blades are modeled based on reverse engineering or on parametric modeling with Computer Fluids Dynamics (CFD) optimization. Then, only raises the question of the manufacturing of the blades. As the design does not take into account machining constraints and especially tool path computation issues in flank milling, the actual performance of the machined blade could not be optimal. In this paper, a new approach is used for the design and manufacture of turbine blades in order to ensure that the simulated machined surface produces the expected hydraulic properties. This consists in the modeling of a continuous tool path based on numerical simulation rather than the blade surface itself. Consequently, this paper aims at defining the steps of the proposed design approach including geometrical modeling, mesh generation, CFD simulation and genetic optimization. The method is applied on an isolated blade profile in a uniform water flow and results are compared to the conventional design process.

[1]  Jian Liu,et al.  Optimization of tool positions locally based on the BCELTP for 5-axis machining of free-form surfaces , 2010, Comput. Aided Des..

[2]  Maître de Conférences,et al.  Dynamique des fluides , 2009 .

[3]  Johanna Senatore,et al.  Analysis of improved positioning in five-axis ruled surface milling using envelope surface , 2005, Comput. Aided Des..

[4]  Claire Lartigue,et al.  CNC tool path in terms of B-spline curves , 2001, Comput. Aided Des..

[5]  Theodosios Korakianitis,et al.  Improved turbine-blade design techniques using 4th-order parametric-spline segments , 1993, Comput. Aided Des..

[6]  Leonardo Baldassarre,et al.  Analysis and Optimization of Transonic Centrifugal Compressor Impellers Using the Design of Experiments Technique , 2002 .

[7]  Pierre Bourdet,et al.  A New Concept for the Design and the Manufacturing of Free-Form Surfaces: The Machining Surface , 1999 .

[8]  L. J. Pritchard,et al.  An Eleven Parameter Axial Turbine Airfoil Geometry Model , 1985 .

[9]  DucEmmanuel,et al.  New approach to 5-axis flank milling of free-form surfaces , 2009 .

[10]  S. Goel Turbine Airfoil Optimization Using Quasi-3D Analysis Codes , 2009 .

[11]  François Avellan,et al.  Surface Parametrization of a Francis Runner Turbine for Optimum Design , 2004 .

[12]  Gianfranco Guidati,et al.  Automated Design Optimization of Compressor Blades for Stationary, Large-Scale Turbomachinery , 2003 .

[13]  Kyriakos C. Giannakoglou,et al.  Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence , 2002 .

[14]  N KoiniGeorgia,et al.  A software tool for parametric design of turbomachinery blades , 2009 .

[15]  J. M. Anders,et al.  A parametric blade design system: Part I & II , 1999 .

[16]  Han Ding,et al.  Global optimization of tool path for five-axis flank milling with a cylindrical cutter , 2009, Comput. Aided Des..

[17]  Sanjeev Bedi,et al.  Triple tangent flank milling of ruled surfaces , 2004, Comput. Aided Des..

[18]  Optimal Geometric Representation of Turbomachinery Cascades Using Nurbs , 2003 .

[19]  Ioannis K. Nikolos,et al.  A software tool for parametric design of turbomachinery blades , 2009, Adv. Eng. Softw..

[20]  Pierre-Yves Pechard,et al.  Geometrical deviations versus smoothness in 5-axis high-speed flank milling , 2009 .

[21]  Claire Lartigue,et al.  Tool path deformation in 5-axis flank milling using envelope surface , 2003, Comput. Aided Des..

[22]  F. Menter,et al.  Ten Years of Industrial Experience with the SST Turbulence Model , 2003 .

[23]  Gérard Poulachon,et al.  New approach to 5-axis flank milling of free-form surfaces: Computation of adapted tool shape , 2009, Comput. Aided Des..

[24]  Ujjwal Maulik,et al.  Multiobjective Genetic Algorithms for Clustering - Applications in Data Mining and Bioinformatics , 2011 .

[25]  George S. Dulikravich,et al.  Constrained shape optimization of airfoil cascades using a Navier-Stokes solver and a genetic/SQP algorithm , 1999 .

[26]  Stephane Pierret,et al.  Turbomachinery Blade Design Using a Navier–Stokes Solver and Artificial Neural Network , 1998 .

[27]  Robert B. Jerard,et al.  Methods for detecting errors in numerically controlled machining of sculptured surfaces , 1989, IEEE Computer Graphics and Applications.

[28]  Luís M.C. Gato,et al.  Design and experimental validation of the inlet guide vane system of a mini hydraulic bulb-turbine , 2010 .

[29]  Byoung K. Choi,et al.  Sculptured Surface Machining: Theory and applications , 2012 .

[30]  Mi-Ching Tsai,et al.  Real-time NURBS command generators for CNC servo controllers , 2002 .