Atomic source selection in space-borne gravitational wave detection

Recent proposals for space-borne gravitational wave detectors based on atom interferometry rely on extremely narrow single-photon transition lines as featured by alkaline-earth metals or atomic species with similar electronic configuration. Despite their similarity, these species differ in key parameters such as abundance of isotopes, atomic flux, density and temperature regimes, achievable expansion rates, density limitations set by interactions, as well as technological and operational requirements. In this study, we compare viable candidates for gravitational wave detection with atom interferometry, contrast the most promising atomic species, identify the relevant technological milestones and investigate potential source concepts towards a future gravitational wave detector in space.

[1]  Wolfgang Ertmer,et al.  Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer , 2015, 1503.01213.

[2]  S. Abend,et al.  Self-alignment of a compact large-area atomic Sagnac interferometer , 2012 .

[3]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[4]  D. Horville,et al.  Atom interferometry with top-hat laser beams , 2018, Applied Physics Letters.

[5]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[6]  Vladislav Gerginov,et al.  A strontium lattice clock with 3 × 10 − 17 ?> inaccuracy and its frequency , 2013, 1312.3419.

[7]  M. Kasevich,et al.  Matter wave lensing to picokelvin temperatures. , 2014, Physical review letters.

[8]  Andrew G. Glen,et al.  APPL , 2001 .

[9]  W. Klitzing,et al.  Hydrodynamic behavior in expanding thermal clouds of 87Rb , 2003, cond-mat/0308493.

[10]  H. Smith,et al.  Bose–Einstein Condensation in Dilute Gases: Superfluidity , 2001 .

[11]  A. Peters,et al.  Bose-Einstein Condensation in Microgravity , 2010, Science.

[12]  Benno Willke,et al.  Advanced techniques in GEO 600 , 2014 .

[13]  M. Kasevich,et al.  Enhanced atom interferometer readout through the application of phase shear. , 2013, Physical review letters.

[14]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[15]  Robert J. Thompson,et al.  NASA’s Cold Atom Lab (CAL): system development and ground test status , 2018, npj Microgravity.

[16]  S. Bize,et al.  Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S(0)↔3P(0) clock transition. , 2011, Physical review letters.

[17]  P. Alam ‘W’ , 2021, Composites Engineering.

[18]  J. Reichel,et al.  Bloch Oscillations of Atoms in an Optical Potential , 1996, EQEC'96. 1996 European Quantum Electronic Conference.

[19]  A. Landragin,et al.  The influence of transverse motion within an atomic gravimeter , 2011 .

[20]  P. Cheinet,et al.  Conception et réalisation d'un gravimètre à atomes froids , 2006 .

[21]  Mansi Kasliwal,et al.  IDENTIFYING ELUSIVE ELECTROMAGNETIC COUNTERPARTS TO GRAVITATIONAL WAVE MERGERS: AN END-TO-END SIMULATION , 2012, 1210.6362.

[22]  D. Holleville,et al.  Development of a strontium optical lattice clock for the SOC mission on the ISS , 2015 .

[23]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[24]  M. S. Shahriar,et al.  Characterization of the LIGO detectors during their sixth science run , 2014, 1410.7764.

[25]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[26]  Y. Castin,et al.  Bloch oscillations of atoms, adiabatic rapid passage, and monokinetic atomic beams , 1997 .

[27]  Achim Peters,et al.  Space-borne Bose–Einstein condensation for precision interferometry , 2018, Nature.

[28]  R. Yamazaki,et al.  Realization of a SU(2)×SU(6) system of fermions in a cold atomic gas. , 2010, Physical review letters.

[29]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[30]  Zach DeVito,et al.  Opt , 2017 .

[31]  M. Kasevich,et al.  New method for gravitational wave detection with atomic sensors. , 2012, Physical review letters.

[32]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[33]  Nan Yu,et al.  Gravitational wave detection with single-laser atom interferometers , 2010, 1003.4218.

[34]  Tetsuya Ido,et al.  Recoil-limited laser cooling of 87Sr atoms near the Fermi temperature. , 2003, Physical review letters.

[35]  D. Gu'ery-Odelin,et al.  Phase-space manipulations of many-body wave functions , 2014, 1409.3727.

[36]  M. Kasevich,et al.  High-order inertial phase shifts for time-domain atom interferometers , 2002, quant-ph/0204102.

[37]  Alexander L. Gaunt,et al.  Bose-Einstein condensation of atoms in a uniform potential. , 2012, Physical review letters.

[38]  N. Gaaloul,et al.  Fast manipulation of Bose-Einstein condensates with an atom chip , 2017, 1712.04820.

[39]  J. Rudolph,et al.  Matter-wave optics with Bose-Einstein condensates in microgravity , 2016 .

[40]  F. Riehle,et al.  Bose-Einstein condensation of alkaline earth atoms: ;{40}Ca. , 2009, Physical review letters.

[41]  Gaël Varoquaux,et al.  How to estimate the differential acceleration in a two-species atom interferometer to test the equivalence principle , 2009, 0910.2412.

[42]  P. Alam,et al.  H , 1887, High Explosives, Propellants, Pyrotechnics.

[43]  Chu,et al.  Evaporative cooling in a crossed dipole trap. , 1995, Physical review letters.

[44]  Ritva Keski-Kuha,et al.  An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO) , 2010, 1009.2702.

[45]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[46]  P. M'esz'aros,et al.  Testing Einstein's weak equivalence principle with gravitational waves , 2016, 1602.01566.

[47]  C W Oates,et al.  High-accuracy measurement of atomic polarizability in an optical lattice clock. , 2011, Physical review letters.

[48]  Jun Ye,et al.  Nuclear spin effects in optical lattice clocks , 2007, 0704.0912.

[49]  E. Rasel,et al.  Matter wave interferometry and gravitational waves , 2009 .

[50]  Savas Dimopoulos,et al.  Atomic gravitational wave interferometric sensor , 2008, 0806.2125.

[51]  Michael Hohensee,et al.  Sources and technology for an atomic gravitational wave interferometric sensor , 2010, 1001.4821.

[52]  T L Nicholson,et al.  Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty , 2014, Nature Communications.