Rigorous analysis of photonic crystal fibers by using a full-vectorial H-field-based finite element method

Modal solutions for photonic crystal fibers with circular air-holes in a hexagonal array are presented, by using a rigorous full-vectorial finite element-based approach. The effective indices, mode field profiles, spot-sizes, modal hybridness, modal birefringence and group velocity dispersion values are presented. The effect of external pressure on photonic crystal fibers is analyzed also by using the powerful finite element method. Modal solutions are obtained for both symmetric and asymmetric air-holes and the effect of pressure on the modal properties and mode degeneration are evaluated, presented and discussed.

[1]  J. Broeng,et al.  Highly birefringent index-guiding photonic crystal fibers , 2001, IEEE Photonics Technology Letters.

[2]  K. Saitoh,et al.  Single-polarization single-mode photonic crystal fibers , 2003, IEEE Photonics Technology Letters.

[3]  J R Taylor,et al.  Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber. , 2004, Optics letters.

[4]  Timothy A. Birks,et al.  Highly increased photonic band gaps in silica/air structures , 1998 .

[5]  Luca Vincetti,et al.  Study of Raman amplification properties in triangular photonic crystal fibers , 2003 .

[6]  Zhaoming Zhu,et al.  Stress-induced birefringence in microstructured optical fibers. , 2003, Optics letters.

[7]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[8]  K. Okamoto,et al.  Stress analysis of optical fibers by a finite element method , 1981 .

[9]  Frank G. Shi,et al.  Finite-difference imaginary-distance beam propagation method for modeling of the fundamental mode of photonic crystal fibers , 2003 .

[10]  Walter Belardi,et al.  Investigation of Brillouin effects in small-core holey optical fiber: lasing and scattering. , 2002, Optics letters.

[11]  D. M. Atkin,et al.  All-silica single-mode optical fiber with photonic crystal cladding. , 1996, Optics letters.

[12]  J. Broeng,et al.  Photonic crystal fibers , 2003, Proceedings of the 2003 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference - IMOC 2003. (Cat. No.03TH8678).

[13]  B.M.A. Rahman,et al.  New full-vectorial numerically efficient propagation algorithm based on the finite element method , 2000, Journal of Lightwave Technology.

[14]  B. Rahman,et al.  Finite-element solution of integrated optical waveguides , 1984 .

[15]  B. Rahman,et al.  Thermal-stress-induced birefringence in bow-tie optical fibers. , 1994, Applied optics.

[16]  W. Bock,et al.  Influence of high hydrostatic pressure on beat length in highly birefringent single-mode bow tie fibers. , 1990, Applied optics.

[17]  Tzong-Lin Wu,et al.  Photonic crystal fiber analysis through the vector boundary-element method: effect of elliptical air hole , 2004 .

[18]  M.N. Zervas,et al.  Pressure sensitivity of side-hole optical fiber sensors , 1998, IEEE Photonics Technology Letters.

[19]  P. Russell,et al.  Endlessly single-mode photonic crystal fiber. , 1997, Optics letters.

[20]  J. Ju,et al.  Properties of a highly birefringent photonic crystal fiber , 2003, IEEE Photonics Technology Letters.

[21]  R. Osgood,et al.  Elliptical-hole photonic crystal fibers. , 2001, Optics letters.

[22]  David J. Richardson,et al.  Holey optical fibers: an efficient modal model , 1999 .

[23]  Zhaoming Zhu,et al.  Full-vectorial finite-difference analysis of microstructured optical fibers. , 2002, Optics express.