Performance recovery under output feedback sampled-data stabilization of a class of nonlinear systems

This paper studies sampled-data output feedback control of a class of nonlinear systems. It is shown that the performance of a stabilizing continuous-time state feedback controller can be recovered by a sampled-data output feedback controller when the sampling period is sufficiently small. The output feedback controller uses a deadbeat discrete-time observer to estimate the unmeasured states. Two schemes are proposed to overcome large initial transients when the controller is switched on.

[1]  Yu. S. Ledyaev,et al.  Asymptotic controllability implies feedback stabilization , 1997, IEEE Trans. Autom. Control..

[2]  B. Anderson,et al.  Digital control of dynamic systems , 1981, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[3]  Dragan Nesic,et al.  A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models , 2004, IEEE Transactions on Automatic Control.

[4]  Robin J. Evans,et al.  Trajectory-approximation-based adaptive control for nonlinear systems under matching conditions , 1998, Autom..

[5]  Dorothée Normand-Cyrot,et al.  On nonlinear digital control , 1997 .

[6]  Dragan Nesic,et al.  Open- and Closed-Loop Dissipation Inequalities Under Sampling and Controller Emulation , 2002, Eur. J. Control.

[7]  J. Grizzle,et al.  Observer design for nonlinear systems with discrete-time measurements , 1995, IEEE Trans. Autom. Control..

[8]  Martin Corless,et al.  On the Convergence of Sampled Data Nonlinear Systems , 1997 .

[9]  A. Michel,et al.  Some qualitative properties of sampled-data control systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[10]  Karl Johan Åström,et al.  Computer-Controlled Systems: Theory and Design , 1984 .

[11]  David H. Owens,et al.  Fast Sampling and Stability of Nonlinear Sampled-Data Systems: Part 2. Sampling Rate Estimations , 1990 .

[12]  Jessy W. Grizzle,et al.  Interpolation and numerical differentiation for observer design , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[13]  Dorothée Normand-Cyrot,et al.  Issues on Nonlinear Digital Control , 2001, Eur. J. Control.

[14]  David H. Owens,et al.  Fast Sampling and Stability of Nonlinear Sampled-Data Systems: Part 1. Existence Theorems , 1990 .

[15]  Dragan Nesic,et al.  A note on input-to-state stabilization for nonlinear sampled-data systems , 2002, IEEE Trans. Autom. Control..

[16]  A. R. Teelb,et al.  Formulas relating KL stability estimates of discrete-time and sampled-data nonlinear systems , 1999 .

[17]  Georges Bastin,et al.  Sampled-data Adaptive-control of a Class of Continuous Nonlinear-systems , 1994 .

[18]  P. Kokotovic,et al.  Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations , 1999 .

[19]  Eduardo Sontag,et al.  Formulas relating KL stability estimates of discrete-time and sampled-data nonlinear systems , 1999 .

[20]  H. Khalil,et al.  Discrete-time implementation of high-gain observers for numerical differentiation , 1999 .

[21]  Ilia G. Polushin,et al.  Multirate versions of sampled-data stabilization of nonlinear systems , 2004, Autom..

[22]  S. Monaco,et al.  On regulation under sampling , 1997, IEEE Trans. Autom. Control..

[23]  Hassan K. Khalil,et al.  Output feedback sampled-data control of nonlinear systems using high-gain observers , 2001, IEEE Trans. Autom. Control..

[24]  Hassan K. Khalil,et al.  A separation principle for the stabilization of a class of nonlinear systems , 1997, 1997 European Control Conference (ECC).

[25]  M. B. Zarrop,et al.  Book Review: Computer Controlled Systems: theory and design (3rd Ed.) , 1998 .

[26]  Robin J. Evans,et al.  Controlling nonlinear time-varying systems via euler approximations , 1992, Autom..