Computing nodal deficiency with a refined spectral flow
暂无分享,去创建一个
[1] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations , 2000 .
[2] M. Dauge. Elliptic boundary value problems on corner domains , 1988 .
[3] W. Arendt,et al. SPECTRAL PROPERTIES OF THE DIRICHLET-TO-NEUMANN OPERATOR ON LIPSCHITZ DOMAINS , 2007 .
[4] Peter Kuchment,et al. Critical Partitions and Nodal Deficiency of Billiard Eigenfunctions , 2011, 1107.3489.
[5] Leonid Friedlander,et al. Some inequalities between Dirichlet and neumann eigenvalues , 1991 .
[6] L. Bers. Local behavior of solutions of general linear elliptic equations , 1955 .
[7] Bernard Helffer,et al. Converse Spectral Problems for Nodal Domains , 2007 .
[8] B. Helffer,et al. Nodal and spectral minimal partitions -- The state of the art in 2015 -- , 2015, 1506.07249.
[9] C. Jones,et al. Manifold decompositions and indices of Schr\"odinger operators , 2015, 1506.07431.
[10] K. Schmüdgen. Unbounded Self-adjoint Operators on Hilbert Space , 2012 .
[11] B. Helffer,et al. Nodal Domains and Spectral Minimal Partitions , 2006, math/0610975.
[12] G. Berkolaiko,et al. Nodal deficiency, spectral flow, and the Dirichlet-to-Neumann map , 2018, Letters in Mathematical Physics.
[13] Defining the spectral position of a Neumann domain , 2020, 2009.14564.
[14] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[15] Jeremy L. Marzuola,et al. Spectral minimal partitions, nodal deficiency and the Dirichlet-to-Neumann map: the generic case , 2022 .
[16] Bernard Helffer,et al. Spectral flow for pair compatible equipartitions , 2020, Communications in Partial Differential Equations.