Spectral/hp discontinuous Galerkin methods for modelling 2D Boussinesq equations

We present spectral/hp discontinuous Galerkin methods for modelling weakly nonlinear and dispersive water waves, described by a set of depth-integrated Boussinesq equations, on unstructured triangular meshes. When solving the equations two different formulations are considered: directly solving the coupled momentum equations and the 'scalar method', in which a wave continuity equation is solved as an intermediate step. We demonstrate that the approaches are fully equivalent and give identical results in terms of accuracy, convergence and restriction on the time step. However, the scalar method is shown to be more CPU efficient for high order expansions, in addition to requiring less storage.

[1]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[2]  George Em Karniadakis,et al.  The Development of Discontinuous Galerkin Methods , 2000 .

[3]  O. Nwogu Alternative form of Boussinesq equations for nearshore wave propagation , 1993 .

[4]  Gian-Carlo Rota,et al.  Theory and application of special functions , 1977 .

[5]  J. S. Antunes do Carmo,et al.  Surface waves propagation in shallow water : a finite element model , 1993 .

[6]  G. Wei,et al.  Time-Dependent Numerical Code for Extended Boussinesq Equations , 1995 .

[7]  David Jon Furbish,et al.  Numerical Solution of the Dam-Break Problem with a Discontinuous Galerkin Method , 2004 .

[8]  Robert A. Dalrymple,et al.  Wave simulations in Ponce de Leon Inlet using Boussinesq model , 2003 .

[9]  E. Toro Shock-Capturing Methods for Free-Surface Shallow Flows , 2001 .

[10]  J. Peiro,et al.  On 2D elliptic discontinuous Galerkin methods , 2006 .

[11]  Yan Yu,et al.  Wave concentration by a navigation channel , 2000 .

[12]  M A U R ´ I C I,et al.  A Fully Nonlinear Boussinesq Model for Surface Waves. Part 2. Extension to O(kh) 4 , 2000 .

[13]  Spencer J. Sherwin,et al.  A Discontinuous Spectral Element Model for Boussinesq-Type Equations , 2002, J. Sci. Comput..

[14]  Chi-Wang Shu,et al.  A Local Discontinuous Galerkin Method for KdV Type Equations , 2002, SIAM J. Numer. Anal..

[15]  Heinz-Otto Kreiss,et al.  Methods for the approximate solution of time dependent problems , 1973 .

[16]  Ole R. Sørensen,et al.  Boussinesq-type modelling using an unstructured finite element technique , 2004 .

[17]  Robert A. Dalrymple,et al.  A fully nonlinear Boussinesq model in generalized curvilinear coordinates , 2001 .

[18]  J. Boyd,et al.  A staggered spectral element model with application to the oceanic shallow , 1995 .

[19]  Spencer J. Sherwin,et al.  A triangular spectral/hp discontinuous Galerkin method for modelling 2D shallow water equations , 2004 .

[20]  H. Schäffer,et al.  Higher–order Boussinesq–type equations for surface gravity waves: derivation and analysis , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  Timothy A. Davis,et al.  UMFPACK Version 4.3 User Guide , 2004 .

[22]  M. Taylor The Spectral Element Method for the Shallow Water Equations on the Sphere , 1997 .

[23]  Jan S. Hesthaven,et al.  Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations , 2002 .

[24]  YanXu,et al.  LOCAL DISCONTINUOUS GALERKIN METHODS FOR THREE CLASSES OF NONLINEAR WAVE EQUATIONS , 2004 .

[25]  O. C. Zienkiewicz,et al.  On 2 D elliptic discontinuous Galerkin methods , 2005 .

[26]  Francis X. Giraldo,et al.  A spectral element shallow water model on spherical geodesic grids , 2001 .

[27]  T. Koornwinder Two-Variable Analogues of the Classical Orthogonal Polynomials , 1975 .

[28]  H. Schäffer,et al.  Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: derivation and analysis , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  Spencer J. Sherwin,et al.  Discontinuous Galerkin Spectral/hp Element Modelling of Dispersive Shallow Water Systems , 2005, J. Sci. Comput..

[30]  Seung-Buhm Woo,et al.  Finite-Element Model for Modified Boussinesq Equations. I: Model Development , 2004 .

[31]  Robert W. Whalin,et al.  WAVE REFRACTION THEORY IN CONVERGENCE ZONE , 1970 .

[32]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[33]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[34]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[35]  George T. Yates,et al.  Three‐Dimensional Scattering of Solitary Waves by Vertical Cylinder , 1992 .

[36]  Chi-Wang Shu,et al.  Local discontinuous Galerkin methods for nonlinear Schrödinger equations , 2005 .

[37]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[38]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[39]  Hans Petter Langtangen,et al.  Computational models for weakly dispersive nonlinear water waves , 1998 .

[40]  P. A. Madsen,et al.  A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry , 1992 .

[41]  PAUL CASTILLO,et al.  Performance of Discontinuous Galerkin Methods for Elliptic PDEs , 2002, SIAM J. Sci. Comput..

[42]  Ilaria Perugia,et al.  An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems , 2000, SIAM J. Numer. Anal..

[43]  Davide Carlo Ambrosi,et al.  A Taylor-Galerkin Method for Simulating Nonlinear Dispersive Water Waves , 1998 .

[44]  Philip L.-F. Liu,et al.  Finite-Element Model for Modified Boussinesq Equations. II: Applications to Nonlinear Harbor Oscillations , 2004 .

[45]  William G. Gray,et al.  A wave equation model for finite element tidal computations , 1979 .

[46]  Hong Ma,et al.  A spectral element basin model for the shallow water equations , 1993 .

[47]  D. Peregrine Long waves on a beach , 1967, Journal of Fluid Mechanics.

[48]  Ge Wei,et al.  A fully nonlinear Boussinesq model for surface waves. Part 2. Extension to O(kh)4 , 2000, Journal of Fluid Mechanics.

[49]  M. Walkley,et al.  A numerical method for extended Boussinesq shallow-water wave equations , 1999 .

[50]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[51]  Spencer J. Sherwin,et al.  Dispersion Analysis of the Continuous and Discontinuous Galerkin Formulations , 2000 .