MRI tissue characterization of experimental cerebral ischemia in rat

To extend the ISODATA image segmentation method to characterize tissue damage in stroke, by generating an MRI score for each tissue that corresponds to its histological damage.

[1]  David G. Norris,et al.  Evolution of Regional Changes in Apparent Diffusion Coefficient during Focal Ischemia of Rat Brain: The Relationship of Quantitative Diffusion NMR Imaging to Reduction in Cerebral Blood Flow and Metabolic Disturbances , 1995, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[2]  B M Dawant,et al.  Brain segmentation and white matter lesion detection in MR images. , 1994, Critical reviews in biomedical engineering.

[3]  R. Vanninen,et al.  Evolution of MR contrast enhancement patterns during the first week after acute ischemic stroke. , 2001, AJNR. American journal of neuroradiology.

[4]  S. Warach,et al.  Magnetic Resonance Imaging of Acute Stroke , 1998, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[5]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[6]  H. Voigt,et al.  Computer vision and digital imaging technology in melanoma detection. , 2002, Seminars in oncology.

[7]  Jerry L Prince,et al.  Current methods in medical image segmentation. , 2000, Annual review of biomedical engineering.

[8]  J. Petruccelli,et al.  Determination of focal ischemic lesion volume in the rat brain using multispectral analysis , 1998, Journal of magnetic resonance imaging : JMRI.

[9]  P. Booker,et al.  A model to predict the histopathology of human stroke using diffusion and T2-weighted magnetic resonance imaging. , 1995, Stroke.

[10]  R P Velthuizen,et al.  MRI segmentation: methods and applications. , 1995, Magnetic resonance imaging.

[11]  M Chopp,et al.  Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. , 1993, The American journal of pathology.

[12]  N Saeed,et al.  Magnetic resonance image segmentation using pattern recognition, and applied to image registration and quantitation , 1998, NMR in biomedicine.

[13]  Max A. Viergever,et al.  Computer-aided diagnosis in chest radiography: a survey , 2001, IEEE Transactions on Medical Imaging.

[14]  P. Weinstein,et al.  Reversible middle cerebral artery occlusion without craniectomy in rats. , 1989, Stroke.

[15]  W. Hacke,et al.  Serial analysis of the apparent diffusion coefficient time course in human stroke , 2002, Neuroradiology.

[16]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[17]  J P Windham,et al.  Eigenimage Filtering in MR Imaging , 1988, Journal of computer assisted tomography.

[18]  M. Maeda,et al.  Arterial hyperintensity on fast fluid-attenuated inversion recovery images: a subtle finding for hyperacute stroke undetected by diffusion-weighted MR imaging. , 2001, AJNR. American journal of neuroradiology.

[19]  K. Tan,et al.  Correlation of the apparent diffusion coefficient and the creatine level in early ischemic stroke: A comparison of different patterns by magnetic resonance , 2001, Journal of magnetic resonance imaging : JMRI.

[20]  Michael Chopp,et al.  The temporal evolution of MRI tissue signatures after transient middle cerebral artery occlusion in rat , 1997, Journal of the Neurological Sciences.

[21]  Hamid Soltanian-Zadeh,et al.  A multidimensional nonlinear edge-preserving filter for magnetic resonance image restoration , 1995, IEEE Trans. Image Process..

[22]  D. Peck,et al.  Registration and warping of magnetic resonance images to histological sections. , 1999, Medical physics.

[23]  Hamid Soltanian-Zadeh,et al.  Semisupervised segmentation of MRI stroke studies , 1997, Medical Imaging.

[24]  Hamid Soltanian-Zadeh,et al.  A comparative analysis of several transformations for enhancement and segmentation of magnetic resonance image scene sequences , 1992, IEEE Trans. Medical Imaging.

[25]  T. Mikkelsen,et al.  Cerebral tumor volume calculations using planimetric and eigenimage analysis. , 1996, Medical physics.

[26]  T. Franquet Imaging of pneumonia: trends and algorithms. , 2001, The European respiratory journal.

[27]  M Fisher,et al.  New magnetic resonance techniques for acute ischemic stroke. , 1995, JAMA.

[28]  Michael J. Sabin,et al.  Convergence and Consistency of Fuzzy c-means/ISODATA Algorithms , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  P. Grenier,et al.  MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. , 1986, Radiology.

[30]  R A Knight,et al.  Unsupervised segmentation of multiparameter MRI in experimental cerebral ischemia with comparison to T2, diffusion, and ADC MRI parameters and histopathological validation , 2000, Journal of magnetic resonance imaging : JMRI.

[31]  M E Moseley,et al.  Evolution of apparent diffusion coefficient, diffusion-weighted, and T2-weighted signal intensity of acute stroke. , 2001, AJNR. American journal of neuroradiology.

[32]  Hamid Soltanian-Zadeh,et al.  Identification of cerebral ischemic lesions in rat using eigenimage filtered magnetic resonance imaging , 1999, Brain Research.

[33]  C. Pelizzari,et al.  Accurate Three‐Dimensional Registration of CT, PET, and/or MR Images of the Brain , 1989, Journal of computer assisted tomography.

[34]  G H Ball,et al.  A clustering technique for summarizing multivariate data. , 1967, Behavioral science.

[35]  K Y Liang,et al.  Longitudinal data analysis for discrete and continuous outcomes. , 1986, Biometrics.

[36]  Steven R. Potter,et al.  Prediction of locoregional extension and metastatic disease in prostate cancer: a review , 2000, World Journal of Urology.

[37]  R. L. Butterfield,et al.  Multispectral analysis of magnetic resonance images. , 1985, Radiology.

[38]  Michael Chopp,et al.  Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat , 1994, Journal of the Neurological Sciences.

[39]  M W Vannier,et al.  Multispectral magnetic resonance image analysis. , 1987, Critical reviews in biomedical engineering.

[40]  Fuhai Li,et al.  Neuroprotective effects of a novel broad‐spectrum cation channel blocker, LOE 908 MS, on experimental focal ischemia: A multispectral study , 1999, Journal of magnetic resonance imaging : JMRI.

[41]  Benoit M. Dawant,et al.  Correction of intensity variations in MR images for computer-aided tissue classification , 1993, IEEE Trans. Medical Imaging.

[42]  H Soltanian-Zadeh,et al.  A Model for Multiparametric MRI Tissue Characterization in Experimental Cerebral Ischemia With Histological Validation in Rat: Part 1 , 2001, Stroke.

[43]  R. Ordidge,et al.  Magnetic Resonance Imaging Assessment of Evolving Focal Cerebral Ischemia Comparison With Histopathology in Rats , 1994, Stroke.

[44]  K. Lim,et al.  Segmentation of MR Brain Images into Cerebrospinal Fluid Spaces, White and Gray Matter , 1989, Journal of computer assisted tomography.

[45]  E. Boltshauser,et al.  Cerebellar involvement in metabolic disorders: a pattern-recognition approach , 1998, Neuroradiology.

[46]  H Soltanian-Zadeh,et al.  A multiresolution approach for contour extraction from brain images. , 1997, Medical physics.

[47]  N. Makris,et al.  Advanced applications of MRI in human brain science. , 2000, The Keio Journal of Medicine.

[48]  Douglas L. Rickman,et al.  Validation of magnetic resonance imaging (MRI) multispectral tissue classification , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[49]  Hamid Soltanian-Zadeh,et al.  Boundary‐based warping of brain MR images , 2000, Medical Imaging: Image Processing.