Event Rate for Extreme Mass Ratio Burst Signals in the Laser Interferometer Space Antenna Band

Stellar mass compact objects in short-period (P ≲ 103 s) orbits about a 104.5-107.5 M☉ massive black hole (MBH) are thought to be a significant continuous-wave source of gravitational radiation for the ESA/NASA Laser Interferometer Space Antenna (LISA) gravitational wave detector. These extreme mass ratio inspiral sources began in long-period, nearly parabolic orbits that have multiple close encounters with the MBH. The gravitational radiation emitted during the close encounters may be detectable by LISA as a gravitational wave burst if the characteristic passage timescale is less than 105 s. Scaling a static, spherical model to the size and mass of the Milky Way bulge, we estimate an event rate of ~15 yr-1 for such burst signals, detectable by LISA with signal-to-noise ratio greater than 5, originating in our Galaxy. When extended to include Virgo Cluster galaxies, our estimate increases to a gravitational wave burst rate of ~18 yr-1. We conclude that these extreme mass ratio burst sources may be a steady and significant source of gravitational radiation in the LISA data streams.

[1]  T. Alexander,et al.  Resonant Relaxation near a Massive Black Hole: The Stellar Distribution and Gravitational Wave Sources , 2006, astro-ph/0601161.

[2]  J. Gair,et al.  Semirelativistic approximation to gravitational radiation from encounters with nonspinning black holes , 2005 .

[3]  J. Gair,et al.  Semi-relativistic approximation to gravitational radiation from encounters with black holes , 2005 .

[4]  O. Jennrich Proceedings of the 5th International LISA Symposium and the 38th ESLAB Symposium, ESTEC, Noordwijk, The Netherlands, 12-15 July 2004 , 2005 .

[5]  Jessica R. Lu,et al.  Stellar Orbits around the Galactic Center Black Hole , 2003, astro-ph/0306130.

[6]  D. Merritt,et al.  Chaotic Loss Cones and Black Hole Fueling , 2004 .

[7]  M. Morris,et al.  Dynamical Friction on Galactic Center Star Clusters with an Intermediate-Mass Black Hole , 2004, astro-ph/0405164.

[8]  T. Sumner,et al.  THE OBSERVATION OF GRAVITATIONAL WAVES FROM SPACE USING LISA , 2004 .

[9]  Karsten Danzmann,et al.  LISA technology - concept, status, prospects , 2003 .

[10]  D. Merritt,et al.  Chaotic Loss Cones, Black Hole Fueling and the M-Sigma Relation , 2003, astro-ph/0302296.

[11]  J. L. Donley,et al.  Accepted for publication in The Astronomical Journal Large-Amplitude X-ray Outbursts from Galactic Nuclei: A Systematic Survey Using ROSAT Archival Data , 2002 .

[12]  S. Hughes,et al.  Approximating the inspiral of test bodies into Kerr black holes , 2002, gr-qc/0205033.

[13]  D. Kennefick,et al.  Zoom and whirl: Eccentric equatorial orbits around spinning black holes and their evolution under gravitational radiation reaction , 2002, gr-qc/0203086.

[14]  P. Ivanov On the formation rate of close binaries consisting of a super‐massive black hole and a white dwarf , 2001, astro-ph/0112317.

[15]  N. Bissantz,et al.  Spiral arms, bar shape and bulge microlensing in the Milky Way , 2001, astro-ph/0110368.

[16]  M. Freitag Monte Carlo cluster simulations to determine the rate of compact star inspiralling to a central galactic black hole , 2001 .

[17]  S. Kawamura,et al.  Possibility of direct measurement of the acceleration of the universe using 0.1 Hz band laser interferometer gravitational wave antenna in space. , 2001, Physical review letters.

[18]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[19]  T. Mahoney,et al.  Inversion of stellar statistics equation for the Galactic bulge , 1999, astro-ph/9911182.

[20]  S. Larson,et al.  Sensitivity curves for spaceborne gravitational wave interferometers , 1999, gr-qc/9909080.

[21]  Peter L. Bender,et al.  Confusion noise level due to galactic and extragalactic binaries , 1997 .

[22]  Oxford,et al.  The photometric structure of the inner Galaxy , 1996, astro-ph/9609066.

[23]  M. Rees,et al.  Capture of stellar mass compact objects by massive black holes in galactic cusps , 1996, astro-ph/9608093.

[24]  A. Udalski,et al.  MODELLING THE GALACTIC BAR USING RED CLUMP GIANTS , 1996 .

[25]  P. Bender,et al.  Gradual approach to coalescence for compact stars orbiting massive black holes , 1995 .

[26]  S. Tremaine,et al.  A family of models for spherical stellar systems , 1993, astro-ph/9309044.

[27]  S. Tremaine,et al.  Tidal disruption of viscous bodies , 1992 .