Simulation Methodology for Inference on Physical Parameters of Complex Vector-Valued Signals

Complex-valued vector time series occur in diverse fields such as oceanography and meteorology, and scientifically interpretable parameters may be estimated from them. We show that it is possible to make inference such as confidence intervals on these parameters using a vector-valued circulant embedding simulation method, combined with bootstrapping. We apply the methodology to three parameters of interest in oceanography, and compare the resulting simulated confidence intervals with those computed using analytic results. We conclude that the simulation scheme offers an inference approach either in the absence of theoretical distributional results, or to check the effect of nuisance parameters where theoretical results are available.

[1]  Donald B. Percival,et al.  Exact simulation of Gaussian Time Series from Nonparametric Spectral Estimates with Application to Bootstrapping , 2006, Stat. Comput..

[2]  Andrew T. Walden,et al.  Statistical Properties of the Estimator of the Rotary Coefficient , 2011, IEEE Transactions on Signal Processing.

[3]  Patrick Rubin-Delanchy,et al.  Kinematics of Complex-Valued Time Series , 2008, IEEE Transactions on Signal Processing.

[4]  Jonathan M. Lilly,et al.  Coherent Eddies in the Labrador Sea Observed from a Mooring , 2002 .

[5]  Pascal Bondon,et al.  Second-order statistics of complex signals , 1997, IEEE Trans. Signal Process..

[6]  J Carpenter,et al.  Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians. , 2000, Statistics in medicine.

[7]  Debashis Kushary,et al.  Bootstrap Methods and Their Application , 2000, Technometrics.

[8]  ShouYan Wang,et al.  Exact confidence interval for magnitude-squared coherence estimates , 2004, IEEE Signal Processing Letters.

[9]  J. Marden,et al.  BIVARIATE QQ-PLOTS AND SPIDER WEB PLOTS , 1998 .

[10]  C. Mooers A technique for the cross spectrum analysis of pairs of complex-valued time series, with emphasis on properties of polarized components and rotational invariants , 1973 .

[11]  A. Walden A unified view of multitaper multivariate spectral estimation , 2000 .

[12]  R. Lumpkin,et al.  Spectral description of oceanic near‐surface variability , 2008 .

[13]  Donald B. Percival,et al.  The effective bandwidth of a multitaper spectral estimator , 1995 .

[14]  Andrew T. Walden,et al.  A Statistical Study of Temporally Smoothed Wavelet Coherence , 2010, IEEE Transactions on Signal Processing.

[15]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[16]  Nicholas I. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[17]  Wensheng Guo,et al.  Multivariate spectral analysis using Cholesky decomposition , 2004 .

[18]  Joseph Gonella,et al.  A rotary-component method for analysing meteorological and oceanographic vector time series , 1972 .

[19]  R. A. Silverman,et al.  An Introduction to the Theory of Stationary Random Functions. , 1964 .

[20]  Russ E. Davis,et al.  Observing Deep Convection in the Labrador Sea during Winter 1994/95 , 1999 .

[21]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .

[22]  A. Walden Rotary components, random ellipses and polarization: a statistical perspective , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  William J. Emery,et al.  Data Analysis Methods in Physical Oceanography , 1998 .

[24]  Donald B. Percival,et al.  Spectral Analysis for Physical Applications , 1993 .

[25]  A. Yaglom,et al.  An Introduction to the Theory of Stationary Random Functions , 1963 .

[26]  Jong-Sen Lee,et al.  Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery , 1994, IEEE Trans. Geosci. Remote. Sens..

[27]  A. T. A. Wood,et al.  Simulation of stationary Gaussian vector fields , 1999, Stat. Comput..