Optimal designs for a class of nonlinear regression models

For a broad class of nonlinear regression models we investigate the local E- and c-optimal design problem. It is demonstrated that in many cases the optimal designs with respect to these optimality criteria are supported at the Chebyshev points, which are the local extrema of the equi-oscillating best approximation of the function f 0 ≡ 0 by a normalized linear combination of the regression functions in the corresponding linearized model. The class of models includes rational, logistic and exponential models and for the rational regression models the E- and c-optimal design problem is solved explicitly in many cases.

[1]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[2]  R. Mykytowycz,et al.  The eye lens as an indicator of age in the wild rabbit in Australia , 1961 .

[3]  Holger Dette,et al.  E-optimal designs for the Michaelis–Menten model , 1999 .

[4]  Michael Becka,et al.  Statistical aspects of inhalation toxicokinetics , 1996, Environmental and Ecological Statistics.

[5]  I. Ford,et al.  The Use of a Canonical Form in the Construction of Locally Optimal Designs for Non‐Linear Problems , 1992 .

[6]  K. Chaloner,et al.  Optimal Bayesian design applied to logistic regression experiments , 1989 .

[7]  D. Wulbert The Rational Approximation of Real Functions , 1978 .

[8]  W. J. Studden,et al.  Geometry of E-Optimality , 1993 .

[9]  C. F. Wu,et al.  Efficient Sequential Designs with Binary Data , 1985 .

[10]  Friedrich Pukelsheim,et al.  Optimal weights for experimental designs on linearly independent support points , 1991 .

[11]  W. J. Studden Optimal Designs on Tchebycheff Points , 1968 .

[12]  L. Imhof,et al.  Optimal designs for rational models and weighted polynomial regression , 1999 .

[13]  V. Melas Analytical Theory of E-optimal Designs for Polynomial Regression , 2000 .

[14]  H. Chernoff Locally Optimal Designs for Estimating Parameters , 1953 .

[15]  Viatcheslav B. Melas Optimal designs for exponential regression , 1978 .

[16]  David A. Ratkowsky,et al.  Handbook of nonlinear regression models , 1990 .

[17]  P. Petrushev,et al.  Rational Approximation of Real Functions , 1988 .

[18]  Lorens A. Imhof,et al.  E-optimal designs for rational models , 1996 .

[19]  Holger Dette,et al.  E-optimal designs for linear and nonlinear models with two parameters , 1994 .

[20]  V. Melas Analytical Properties of Locally D -optimal Designs for Rational Models , 2001 .

[21]  W. J. Studden,et al.  Tchebycheff Systems: With Applications in Analysis and Statistics. , 1967 .

[22]  W. J. Studden,et al.  Remez's Procedure for Finding Optimal Designs , 1976 .

[23]  Friedrich Pukelsheim,et al.  E-Optimal Designs for Polynomial Regression , 1993 .

[24]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[25]  E. Walter,et al.  Robust experiment design via stochastic approximation , 1985 .

[26]  G. Elfving Optimum Allocation in Linear Regression Theory , 1952 .

[27]  David A. Ratkowsky,et al.  Nonlinear regression modeling : a unified practical approach , 1984 .

[28]  Michael Jackson,et al.  Optimal Design of Experiments , 1994 .

[29]  B. Heiligers E-OPTIMAL DESIGNS IN WEIGHTED POLYNOMIAL REGRESSION , 1994 .

[30]  J. Kiefer General Equivalence Theory for Optimum Designs (Approximate Theory) , 1974 .

[31]  Eric R. Ziegel,et al.  Handbook of Nonlinear Regression Models , 1991 .

[32]  V. Melas,et al.  Optimal designs for estimating individual coefficients in polynomial regression: a functional approach , 2001 .

[33]  S. Silvey,et al.  A sequentially constructed design for estimating a nonlinear parametric function , 1980 .

[34]  H. Bolt,et al.  Statistical evaluation of toxicokinetic data , 1993 .

[35]  D. Titterington,et al.  An optimal design problem in rhythmometry. , 1988, Biometrics.