Operator-splitting and Lagrange multiplier domain decomposition methods for numerical simulation of two coupled Navier-Stokes fluids

We present a numerical simulation of two coupled Navier-Stokes flows, using operator-splitting and optimization-based nonoverlapping domain decomposition methods. The model problem consists of two Navier-Stokes fluids coupled, through a common interface, by a nonlinear transmission condition. Numerical experiments are carried out with two coupled fluids; one with an initial linear profile and the other in rest. As expected, the transmission condition generates a recirculation within the fluid in rest.

[1]  Max D. Gunzburger,et al.  An Optimization-Based Domain Decomposition Method for the Navier-Stokes Equations , 2000, SIAM J. Numer. Anal..

[2]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[3]  Jonas Koko,et al.  Uzawa Conjugate Gradient Domain Decomposition Methods for Coupled Stokes Flows , 2006, J. Sci. Comput..

[4]  Qiang Du,et al.  A Gradient Method Approach to Optimization-Based Multidisciplinary Simulations and Nonoverlapping Domain Decomposition Algorithms , 2000, SIAM J. Numer. Anal..

[5]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[6]  G. Marchuk Splitting and alternating direction methods , 1990 .

[7]  Jacques Periaux,et al.  Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies , 1998 .

[8]  N. SIAMJ.,et al.  OPTIMIZATION BASED NONOVERLAPPING DOMAIN DECOMPOSITION ALGORITHMS AND THEIR CONVERGENCE∗ , 2001 .

[9]  D. Bresch,et al.  AN OPTIMIZATION-BASED DOMAIN DECOMPOSITION METHOD FOR NONLINEAR WALL LAWS IN COUPLED SYSTEMS , 2004 .

[10]  Christine Bernardi,et al.  A Model for Two Coupled Turbulent Fluids Part II: Numerical Analysis of a Spectral Discretization , 2002, SIAM J. Numer. Anal..

[11]  P. G. Ciarlet,et al.  Numerical Methods for Fluids, Part 3 , 2003 .

[12]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[13]  Christine Bernardi,et al.  A model for two coupled turbulent fluids Part III: Numerical approximation by finite elements , 2004, Numerische Mathematik.

[14]  P. Suquet,et al.  Discontinuities and Plasticity , 1988 .

[15]  Roger Temam,et al.  Models for the coupled atmosphere and ocean , 1993 .

[16]  R. Temam,et al.  Models of the coupled atmosphere and ocean (CAO I). I , 1993 .

[17]  Qiang Du,et al.  Optimization Based Nonoverlapping Domain Decomposition Algorithms and Their Convergence , 2001, SIAM J. Numer. Anal..

[18]  Jacques Periaux,et al.  A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow , 2000 .

[19]  J. Daniel On the approximate minimization of functionals , 1969 .

[20]  Elijah Polak,et al.  Computational methods in optimization , 1971 .

[21]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[22]  Christine Bernardi,et al.  A model for two coupled turbulent fluids: Part I : Analysis of the system , 2002 .

[23]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[24]  Roland Glowinski,et al.  Simulating the dynamics of fluid-ellipsoid interactions , 2005 .

[25]  J. Koko AN OPTIMIZATION-BASED DOMAIN DECOMPOSITION METHOD FOR A BONDED STRUCTURE , 2002 .

[26]  Alfio Quarteroni,et al.  Coupling of free surface and groundwater flows , 2003 .

[27]  P. G. Ciarlet,et al.  Numerical methods for fluids , 2003 .

[28]  Janet Peterson,et al.  An optimization based domain decomposition method for partial differential equations , 1999 .