Operator-splitting and Lagrange multiplier domain decomposition methods for numerical simulation of two coupled Navier-Stokes fluids
暂无分享,去创建一个
[1] Max D. Gunzburger,et al. An Optimization-Based Domain Decomposition Method for the Navier-Stokes Equations , 2000, SIAM J. Numer. Anal..
[2] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[3] Jonas Koko,et al. Uzawa Conjugate Gradient Domain Decomposition Methods for Coupled Stokes Flows , 2006, J. Sci. Comput..
[4] Qiang Du,et al. A Gradient Method Approach to Optimization-Based Multidisciplinary Simulations and Nonoverlapping Domain Decomposition Algorithms , 2000, SIAM J. Numer. Anal..
[5] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .
[6] G. Marchuk. Splitting and alternating direction methods , 1990 .
[7] Jacques Periaux,et al. Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies , 1998 .
[8] N. SIAMJ.,et al. OPTIMIZATION BASED NONOVERLAPPING DOMAIN DECOMPOSITION ALGORITHMS AND THEIR CONVERGENCE∗ , 2001 .
[9] D. Bresch,et al. AN OPTIMIZATION-BASED DOMAIN DECOMPOSITION METHOD FOR NONLINEAR WALL LAWS IN COUPLED SYSTEMS , 2004 .
[10] Christine Bernardi,et al. A Model for Two Coupled Turbulent Fluids Part II: Numerical Analysis of a Spectral Discretization , 2002, SIAM J. Numer. Anal..
[11] P. G. Ciarlet,et al. Numerical Methods for Fluids, Part 3 , 2003 .
[12] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[13] Christine Bernardi,et al. A model for two coupled turbulent fluids Part III: Numerical approximation by finite elements , 2004, Numerische Mathematik.
[14] P. Suquet,et al. Discontinuities and Plasticity , 1988 .
[15] Roger Temam,et al. Models for the coupled atmosphere and ocean , 1993 .
[16] R. Temam,et al. Models of the coupled atmosphere and ocean (CAO I). I , 1993 .
[17] Qiang Du,et al. Optimization Based Nonoverlapping Domain Decomposition Algorithms and Their Convergence , 2001, SIAM J. Numer. Anal..
[18] Jacques Periaux,et al. A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow , 2000 .
[19] J. Daniel. On the approximate minimization of functionals , 1969 .
[20] Elijah Polak,et al. Computational methods in optimization , 1971 .
[21] R. Glowinski,et al. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .
[22] Christine Bernardi,et al. A model for two coupled turbulent fluids: Part I : Analysis of the system , 2002 .
[23] Barry Smith,et al. Domain Decomposition Methods for Partial Differential Equations , 1997 .
[24] Roland Glowinski,et al. Simulating the dynamics of fluid-ellipsoid interactions , 2005 .
[25] J. Koko. AN OPTIMIZATION-BASED DOMAIN DECOMPOSITION METHOD FOR A BONDED STRUCTURE , 2002 .
[26] Alfio Quarteroni,et al. Coupling of free surface and groundwater flows , 2003 .
[27] P. G. Ciarlet,et al. Numerical methods for fluids , 2003 .
[28] Janet Peterson,et al. An optimization based domain decomposition method for partial differential equations , 1999 .