An estimator of the inverse covariance matrix and its application to ML parameter estimation in dynamical systems

An exact formula of the inverse covariance matrix of an autoregressive stochastic process is obtained using the Gohberg-Semencul explicit inverse of the Toeplitz matrix. This formula is used to build an estimator of the inverse covariance matrix of a stochastic process based on a single realization. In this paper, we show that this estimator can be conveniently applied to maximum likelihood parameter estimation in nonlinear dynamical system with correlated measurement noise. The efficiency of the estimation scheme is illustrated via Monte-Carlo simulations. It is shown that the statistical properties of the estimated parameters are largely improved using the proposed inverse covariance matrix estimator in comparison to the classical variance estimator.

[1]  Asoke K. Nandi,et al.  A comparative study of AR order selection methods , 1994, Signal Process..

[2]  Gerd Vandersteen,et al.  Frequency-domain system identification using non-parametric noise models estimated from a small number of data sets , 1997, Autom..

[3]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[4]  C. A. Glasbey Nonlinear Regression with Autoregressive Time Series Errors , 1980 .

[5]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[6]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[7]  Robert Grover Brown,et al.  Introduction to random signal analysis and Kalman filtering , 1983 .

[8]  M. Rosenblatt Stationary sequences and random fields , 1985 .

[9]  A. Ronald Gallant,et al.  Nonlinear Regression with Autocorrelated Errors , 1976 .

[10]  Yves Rolain,et al.  Study of conditional ML estimators in time and frequency domain system identification , 1997, 1997 European Control Conference (ECC).

[11]  Eric Walter,et al.  Identification of Parametric Models: from Experimental Data , 1997 .

[12]  M. Morf,et al.  Inverses of Toeplitz operators, innovations, and orthogonal polynomials , 1975, 1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes.

[13]  J. Schoukens,et al.  A maximum likelihood estimator for linear and nonlinear systems-a practical application of estimation techniques in measurement problems , 1988 .

[14]  C. A. Glasbey,et al.  Correlated Residuals in Non‐Linear Regression Applied to Growth Data , 1979 .