Wavelet-Based Image Estimation : An Empirical Bayes Approach Using Jeffreys ’ Noninformative Prior
暂无分享,去创建一个
[1] E. L. Lehmann,et al. Theory of point estimation , 1950 .
[2] D. Ruderman. The statistics of natural images , 1994 .
[3] David R. Brillinger,et al. Uses of cumulants in wavelet analysis , 1994, Optics & Photonics.
[4] Pierre Comon,et al. Independent component analysis, A new concept? , 1994, Signal Process..
[5] Terrence J. Sejnowski,et al. An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.
[6] D. Donoho,et al. Translation-Invariant De-Noising , 1995 .
[7] I. Johnstone,et al. Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .
[8] L. Breiman. Better subset regression using the nonnegative garrote , 1995 .
[9] C. Robert. The Bayesian choice : a decision-theoretic motivation , 1996 .
[10] David J. Field,et al. Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.
[11] R. Nowak. Optimal signal estimation using cross-validation , 1997, IEEE Signal Processing Letters.
[12] A. Bruce,et al. WAVESHRINK WITH FIRM SHRINKAGE , 1997 .
[13] José M. N. Leitão,et al. Unsupervised image restoration and edge location using compound Gauss-Markov random fields and the MDL principle , 1997, IEEE Trans. Image Process..
[14] H. Chipman,et al. Adaptive Bayesian Wavelet Shrinkage , 1997 .
[15] R. Nowak,et al. Bayesian wavelet-based signal estimation using non-informative priors , 1998, Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284).
[16] T. Ens,et al. Blind signal separation : statistical principles , 1998 .
[17] B. Vidakovic. Nonlinear wavelet shrinkage with Bayes rules and Bayes factors , 1998 .
[18] R. DeVore,et al. Nonlinear approximation , 1998, Acta Numerica.
[19] B. Silverman,et al. Wavelet thresholding via a Bayesian approach , 1998 .
[20] Robert D. Nowak,et al. Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..
[21] S. Mallat. A wavelet tour of signal processing , 1998 .
[22] Hong-Ye Gao,et al. Wavelet Shrinkage Denoising Using the Non-Negative Garrote , 1998 .
[23] Robert D. Nowak,et al. Wavelet-domain filtering for photon imaging systems , 1999, IEEE Trans. Image Process..
[24] Mário A. T. Figueiredo,et al. Bayesian wavelet-based image estimation using noninformative priors , 1999, Optics & Photonics.
[25] Pierre Moulin,et al. Analysis of Multiresolution Image Denoising Schemes Using Generalized Gaussian and Complexity Priors , 1999, IEEE Trans. Inf. Theory.
[26] Hyvarinen. Sparse code shrinkage: denoising of nongaussian data by maximum likelihood estimation , 1999, Neural computation.
[27] Kannan Ramchandran,et al. Low-complexity image denoising based on statistical modeling of wavelet coefficients , 1999, IEEE Signal Processing Letters.
[28] Hamid Krim,et al. Minimax Description Length for Signal Denoising and Optimized Representation , 1999, IEEE Trans. Inf. Theory.
[29] Eric R. Ziegel,et al. Practical Nonparametric and Semiparametric Bayesian Statistics , 1998, Technometrics.
[30] Aapo Hyvärinen,et al. Sparse Code Shrinkage: Denoising of Nongaussian Data by Maximum Likelihood Estimation , 1999, Neural Computation.
[31] Sujit K. Ghosh,et al. Essential Wavelets for Statistical Applications and Data Analysis , 2001, Technometrics.
[32] Sailes K. Sengupta,et al. Bayesian Inference in Wavelet-Based Models , 2002, Technometrics.