Wavelet-Based Image Estimation : An Empirical Bayes Approach Using Jeffreys ’ Noninformative Prior

The sparseness and decorrelation properties of the discrete wavelet transform have been exploited to develop powerful denoising methods. However, most of these methods have free parameters which have to be adjusted or estimated. In this paper, we propose a wavelet-based denoising technique without any free parameters; it is, in this sense, a “universal” method. Our approach uses empirical Bayes estimation based on a Jeffreys’ noninformative prior; it is a step toward objective Bayesian wavelet-based denoising. The result is a remarkably simple fixed nonlinear shrinkage/thresholding rule which performs better than other more computationally demanding methods.

[1]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[2]  D. Ruderman The statistics of natural images , 1994 .

[3]  David R. Brillinger,et al.  Uses of cumulants in wavelet analysis , 1994, Optics & Photonics.

[4]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[5]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[6]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[7]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[8]  L. Breiman Better subset regression using the nonnegative garrote , 1995 .

[9]  C. Robert The Bayesian choice : a decision-theoretic motivation , 1996 .

[10]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[11]  R. Nowak Optimal signal estimation using cross-validation , 1997, IEEE Signal Processing Letters.

[12]  A. Bruce,et al.  WAVESHRINK WITH FIRM SHRINKAGE , 1997 .

[13]  José M. N. Leitão,et al.  Unsupervised image restoration and edge location using compound Gauss-Markov random fields and the MDL principle , 1997, IEEE Trans. Image Process..

[14]  H. Chipman,et al.  Adaptive Bayesian Wavelet Shrinkage , 1997 .

[15]  R. Nowak,et al.  Bayesian wavelet-based signal estimation using non-informative priors , 1998, Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284).

[16]  T. Ens,et al.  Blind signal separation : statistical principles , 1998 .

[17]  B. Vidakovic Nonlinear wavelet shrinkage with Bayes rules and Bayes factors , 1998 .

[18]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[19]  B. Silverman,et al.  Wavelet thresholding via a Bayesian approach , 1998 .

[20]  Robert D. Nowak,et al.  Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..

[21]  S. Mallat A wavelet tour of signal processing , 1998 .

[22]  Hong-Ye Gao,et al.  Wavelet Shrinkage Denoising Using the Non-Negative Garrote , 1998 .

[23]  Robert D. Nowak,et al.  Wavelet-domain filtering for photon imaging systems , 1999, IEEE Trans. Image Process..

[24]  Mário A. T. Figueiredo,et al.  Bayesian wavelet-based image estimation using noninformative priors , 1999, Optics & Photonics.

[25]  Pierre Moulin,et al.  Analysis of Multiresolution Image Denoising Schemes Using Generalized Gaussian and Complexity Priors , 1999, IEEE Trans. Inf. Theory.

[26]  Hyvarinen Sparse code shrinkage: denoising of nongaussian data by maximum likelihood estimation , 1999, Neural computation.

[27]  Kannan Ramchandran,et al.  Low-complexity image denoising based on statistical modeling of wavelet coefficients , 1999, IEEE Signal Processing Letters.

[28]  Hamid Krim,et al.  Minimax Description Length for Signal Denoising and Optimized Representation , 1999, IEEE Trans. Inf. Theory.

[29]  Eric R. Ziegel,et al.  Practical Nonparametric and Semiparametric Bayesian Statistics , 1998, Technometrics.

[30]  Aapo Hyvärinen,et al.  Sparse Code Shrinkage: Denoising of Nongaussian Data by Maximum Likelihood Estimation , 1999, Neural Computation.

[31]  Sujit K. Ghosh,et al.  Essential Wavelets for Statistical Applications and Data Analysis , 2001, Technometrics.

[32]  Sailes K. Sengupta,et al.  Bayesian Inference in Wavelet-Based Models , 2002, Technometrics.