Compensation of Parameter-dependent Complex Hysteretic Actuator Nonlinearities In Smart Material Systems

In many mechatronic applications actuators which are based on active materials are found and thus show a strong complex hysteretic output-input characteristic. A typical example is the hysteresis in actuators based on magnetostrictive materials. Unfortunately, especially in this case the hysteretic characteristic depends on a second input parameter, the mechanical stress in the material, which affects strongly the form of the hysteretic curves. In the best case these undesired effects lead to a reduced system perfomance and in the worst case to an unpredictable behavior of the superior control unit. Therefore, it is useful and effective to linearize these nonlinearities by a compensator which is also able to consider the dependence of the output on the second input. For this purpose this study describes the design of a compensator for parameter-dependent complex hysteretic nonlinearities which are based on a new so-called threshold-discrete formulation of the Preisach hysteresis operator. Finally, some experimental results are presented, which document the capability of the method for practical applications.

[1]  Alison B. Flatau,et al.  Structural magnetic strain model for magnetostrictive transducers , 2000 .

[2]  Klaus Kuhnen,et al.  Modeling, Identification and Compensation of Complex Hysteretic Nonlinearities: A Modified Prandtl - Ishlinskii Approach , 2003, Eur. J. Control.

[3]  A. Bergqvist,et al.  A stress-dependent magnetic Preisach hysteresis model , 1991 .

[4]  Xiaobo Tan,et al.  Approximate inversion of the Preisach hysteresis operator with application to control of smart actuators , 2005, IEEE Transactions on Automatic Control.

[5]  Dimitris C. Lagoudas,et al.  Adaptive Hysteresis Model for Model Reference Control with Actuator Hysteresis , 2000 .

[6]  David Jiles,et al.  Theory of ferromagnetic hysteresis: evaluation of stress from hysteresis curves , 1988 .

[7]  K. Kuhnen,et al.  COMPENSATION OF THE CREEP AND HYSTERESIS EFFECTS OF PIEZOELECTRIC ACTUATORS WITH INVERSE SYSTEMS , 2000 .

[8]  K. Kuhnen,et al.  Inverse control of systems with hysteresis and creep , 2001 .

[9]  A. Visintin Differential models of hysteresis , 1994 .

[10]  Hartmut Janocha,et al.  Adaptronischer Schwingungsabsorber für einen weiten Einsatzbereich (Adaptronic Vibration Absorber for a Wide Field of Applications) , 2006, Autom..

[11]  Michael A. Saunders,et al.  Procedures for optimization problems with a mixture of bounds and general linear constraints , 1984, ACM Trans. Math. Softw..

[12]  R.V. Iyer,et al.  Hysteresis parameter identification with limited experimental data , 2004, IEEE Transactions on Magnetics.

[13]  Sandro Manservisi,et al.  On a low-dimensional model for magnetostriction , 2006 .

[14]  Ciro Visone,et al.  Identification and compensation of Preisach hysteresis models for magnetostrictive actuators , 2001 .

[15]  John S. Baras,et al.  Modeling and control of hysteresis in magnetostrictive actuators , 2004, Autom..

[16]  D. Jiles,et al.  Theory of ferromagnetic hysteresis , 1986 .

[17]  I. Mayergoyz,et al.  Preisach modeling of magnetostrictive hysteresis , 1991 .

[18]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[19]  Pavel Krejčí,et al.  Hysteresis, convexity and dissipation in hyperbolic equations , 1996 .

[20]  M. Krasnosel’skiǐ,et al.  Systems with Hysteresis , 1989 .

[21]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .