The WSSUS Pulse Design Problem in Multicarrier Transmission

Optimal link adaption to the scattering function of wide-sense stationary uncorrelated scattering (WSSUS) mobile communication channels is still an unsolved problem despite its importance for next-generation system design. In multicarrier transmission, such link adaption is performed by pulse shaping, i.e., by properly adjusting the transmit and receive filters. For example, pulse-shaped offset-quadrature amplitude modulation (OQAM) systems have recently been shown to have superior performance over standard cyclic prefix orthogonal frequency-division multiplexing (OFDM) (while operating at higher spectral efficiency). In this paper, we establish a general mathematical framework for joint transmitter and receiver pulse shape optimization for so-called Weyl-Heisenberg or Gabor signaling with respect to the scattering function of the WSSUS channel. In our framework, the pulse shape optimization problem is translated to an optimization problem over trace class operators which, in turn, is related to fidelity optimization in quantum information processing. By convexity relaxation, the problem is shown to be equivalent to a convex constraint quasi-convex maximization problem thereby revealing the nonconvex nature of the overall WSSUS pulse design problem. We present several iterative algorithms for optimization providing applicable results even for large-scale problem constellations. We show that with transmitter-side knowledge of the channel statistics a gain of 3-6 dB in signal-to-interference-and-noise-ratio (SINR) can be expected.

[1]  Peter Jung,et al.  Weighted Norms of Ambiguity Functions and Wigner Distributions , 2006, 2006 IEEE International Symposium on Information Theory.

[2]  Peter Jung,et al.  OQAM / IOTA Downlink Air Interface for 3 G / 4 G , 2006 .

[3]  Peter Jung Precoding for 2x2 Doubly-Dispersive WSSUS Channels , 2005, ArXiv.

[4]  Gerhard Wunder,et al.  On time-variant distortions in multicarrier transmission with application to frequency offsets and phase noise , 2005, IEEE Transactions on Communications.

[5]  William Gordon Ritter,et al.  Quantum channels and representation theory , 2005, quant-ph/0502153.

[6]  Gerhard Wunder,et al.  A group-theoretic approach to the WSSUS pulse design problem , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[7]  T. Strohmer,et al.  Wilson Bases for General Time-Frequency Lattices , 2003, SIAM J. Math. Anal..

[8]  Akbar M. Sayeed,et al.  Orthogonal time-frequency signaling over doubly dispersive channels , 2004, IEEE Transactions on Information Theory.

[9]  C. Caves,et al.  Fidelity of Gaussian Channels , 2004, Open Syst. Inf. Dyn..

[10]  G. Wunder,et al.  Iterative pulse shaping for Gabor signaling in WSSUS channels , 2004, IEEE 5th Workshop on Signal Processing Advances in Wireless Communications, 2004..

[11]  S. Lloyd,et al.  Minimum output entropy of bosonic channels: A conjecture , 2004, quant-ph/0404005.

[12]  Thomas Strohmer,et al.  Optimal OFDM design for time-frequency dispersive channels , 2003, IEEE Trans. Commun..

[13]  Helmut Bölcskei,et al.  Orthogonalization of OFDM/OQAM pulse shaping filters using the discrete Zak transform , 2003, Signal Process..

[14]  Helmut Bölcskei,et al.  Orthogonal Frequency Division Multiplexing Based on Offset QAM , 2003 .

[15]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[16]  Gerald Matz,et al.  Pulse-shaping OFDM/BFDM systems for time-varying channels: ISI/ICI analysis, optimal pulse design, and efficient implementation , 2002, The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[17]  Akbar M. Sayeed,et al.  Performance of orthogonal short-time Fourier signaling over doubly dispersive channels , 2002, Proceedings IEEE International Symposium on Information Theory,.

[18]  Dominique Lacroix,et al.  OFDM with guard interval versus OFDM/offsetQAM for high data rate UMTS downlink transmission , 2001, IEEE 54th Vehicular Technology Conference. VTC Fall 2001. Proceedings (Cat. No.01CH37211).

[19]  T. Strohmer,et al.  Characterization and Computation of Canonical Tight Windows for Gabor Frames , 2000, math/0010245.

[20]  Helmut Bölcskei,et al.  Equivalence of two methods for constructing tight Gabor frames , 2000, IEEE Signal Processing Letters.

[21]  Anna Scaglione,et al.  Redundant filterbank precoders and equalizers. II. Blind channel estimation, synchronization, and direct equalization , 1999, IEEE Trans. Signal Process..

[22]  Andreas F. Molisch,et al.  Nonorthogonal pulseshapes for multicarrier communications in doubly dispersive channels , 1998, IEEE J. Sel. Areas Commun..

[23]  Anna Scaglione,et al.  Redundant filterbank precoders and equalizers: unification and optimal designs , 1998, ICC '98. 1998 IEEE International Conference on Communications. Conference Record. Affiliated with SUPERCOMM'98 (Cat. No.98CH36220).

[24]  T. Strohmer,et al.  Gabor Analysis and Algorithms: Theory and Applications , 1997 .

[25]  A. Ron,et al.  Weyl-Heisenberg frames and Riesz bases in $L_2(\mathbb{R}^d)$ , 1997 .

[26]  Claude Berrou,et al.  Coded orthogonal frequency division multiplex [TV broadcasting] , 1995, Proc. IEEE.

[27]  Yoichi Sato,et al.  Optimum soft-output detection for channels with intersymbol interference , 1995, IEEE Trans. Inf. Theory.

[28]  B. Floch,et al.  Coded orthogonal frequency division multiplex , 1995 .

[29]  Fuyun Ling,et al.  Optimal Tracking of Time-Varying Channels: A Frequency Domain Approach for Known and New Algorithms , 1995, IEEE J. Sel. Areas Commun..

[30]  S. Gelfand,et al.  Bayesian decision feedback techniques for deconvolution , 1994, 1994 IEEE GLOBECOM. Communications: The Global Bridge.

[31]  J. P. Seymour,et al.  Near-optimal symbol-by-symbol detection schemes for flat Rayleigh fading , 1994, 1994 IEEE GLOBECOM. Communications: Communications Theory Mini-Conference Record,.

[32]  Hall,et al.  Gaussian noise and quantum-optical communication. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[33]  A. Ron,et al.  Weyl-Heisenberg Frames and Riesz Bases in L2(Rd). , 1994 .

[34]  Desmond P. Taylor,et al.  An adaptive maximum likelihood receiver for correlated Rayleigh-fading channels , 1994, IEEE Trans. Commun..

[35]  Michael P. Fitz,et al.  Bayesian techniques for equalization of rapidly fading frequency selective channels , 1994, Proceedings of IEEE Vehicular Technology Conference (VTC).

[36]  U. Mengali,et al.  Symbol-aided channel estimation with nonselective Rayleigh fading channels , 1994, Proceedings of ICC/SUPERCOMM'94 - 1994 International Conference on Communications.

[37]  Heinrich Meyr,et al.  Optimal parametric feedforward estimation of frequency-selective fading radio channels , 1994, IEEE Trans. Commun..

[38]  Edward Shwedyk,et al.  Detection of bandlimited signals over frequency selective Rayleigh fading channels , 1994, IEEE Trans. Commun..

[39]  Riccardo Raheli,et al.  Per-Survivor Processing , 1993 .

[40]  Xiaoyong Yu,et al.  Innovations-based MLSE for Rayleigh fading channels , 1993, Proceedings of IEEE Pacific Rim Conference on Communications Computers and Signal Processing.

[41]  Fuyun Ling,et al.  Joint data and channel estimation for TDMA mobile channels , 1992, [1992 Proceedings] The Third IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[42]  Ronald A. Iltis A Bayesian Maximum-Likelihood Sequence Estimation Algorithm for a priori Unknown Channels and Symbol Timing , 1992, IEEE J. Sel. Areas Commun..

[43]  J. Cavers An analysis of pilot symbol assisted modulation for Rayleigh fading channels (mobile radio) , 1991 .

[44]  I. Daubechies,et al.  Erratum: A Simple Wilson Orthonormal Basis with Exponential Decay , 1991 .

[45]  W. R. Braun,et al.  A physical mobile radio channel model , 1991, [1991 Proceedings] 41st IEEE Vehicular Technology Conference.

[46]  I. Daubechies,et al.  A simple Wilson orthonormal basis with exponential decay , 1991 .

[47]  Calvin H. Wilcox,et al.  The Synthesis Problem for Radar Ambiguity Functions , 1991 .

[48]  John H. Lodge,et al.  Maximum likelihood sequence estimation of CPM signals transmitted over Rayleigh flat-fading channels , 1990, IEEE Trans. Commun..

[49]  V. Guillemin,et al.  Review: Gerald Folland, Harmonic analysis in phase space , 1990 .

[50]  Stanley J. Simmons,et al.  Breadth-first trellis decoding with adaptive effort , 1990, IEEE Trans. Commun..

[51]  Gerd Ascheid,et al.  Adaptive synchronization and channel parameter estimation using an extended Kalman filter , 1989, IEEE Trans. Commun..

[52]  G. Folland Harmonic Analysis in Phase Space. (AM-122), Volume 122 , 1989 .

[53]  Shahid U. H. Qureshi,et al.  Reduced-state sequence estimation with set partitioning and decision feedback , 1988, IEEE Trans. Commun..

[54]  A. P. Clark,et al.  Fast start-up channel estimation , 1984 .

[55]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[56]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[57]  Hiroshi Konno,et al.  A cutting plane algorithm for solving bilinear programs , 1976, Math. Program..

[58]  W. C. Jakes,et al.  Microwave Mobile Communications , 1974 .

[59]  R. Chang Synthesis of band-limited orthogonal signals for multichannel data transmission , 1966 .

[60]  P. Bello Characterization of Randomly Time-Variant Linear Channels , 1963 .

[61]  W. Stinespring Positive functions on *-algebras , 1955 .

[62]  P. Löwdin On the Non‐Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals , 1950 .