Ultraviolet nano-photodetector based on ZnS:Cl nanoribbon/Au Schottky junctions

We report on a semiconductor nanostructures/metal Schottky junction for optoelectronic device application. The n-type ZnS nanoribbons (NRs) with an electron mobility of 64.9 cm V−1 s−1 and electron concentration of 5.7 × 1017 cm−3 were synthesized by using Cl as dopant via a thermal co-evaporation method. Electrical analysis reveals that the Schottky barrier diodes (SBD) based on the ZnS:Cl NRs/Au junctions exhibited typical rectifying behavior (rectification ratio >103) with Schottky barrier height of .64 eV and a small ideality factor of ~1.05 at 320 K. Interestingly, n-ZnS:Cl NR/Au nano-SBD device exhibited pronounced negative photoresponse at forward bias, but positive photoresponse at reverse bias under 365 nm UV light irradiation. Finally, the detailed reason for this phenomenon was explained by the energy band diagram.

[1]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[2]  J. Shah,et al.  ac electroluminescence in thin‐film ZnSe : Mn , 1978 .

[3]  T. Hattori,et al.  Satellite peak generation in the electroluminescence spectrum of ZnS:Sm grown by metalorganic chemical vapor deposition with Cl codoping , 1994 .

[4]  H. Luo,et al.  The II-VI semiconductor blue-green laser: challenges and solution , 1995 .

[5]  Chun-Hua Yan,et al.  ZnS nanoparticles doped with Cu(I) by controlling coordination and precipitation in aqueous solution , 1999 .

[6]  Tetsuya Yamamoto,et al.  Control of valence states for ZnS by triple-codoping method , 2001 .

[7]  N. Hebalkar,et al.  Properties of zinc sulphide nanoparticles stabilized in silica , 2001 .

[8]  Shui-Tong Lee,et al.  Room-temperature single nanoribbon lasers , 2004 .

[9]  N. Karar,et al.  Structure and photoluminescence studies on ZnS:Mn nanoparticles , 2004 .

[10]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[11]  C. Choy,et al.  Negative photoconductivity and memory effects of germanium nanocrystals embedded in HfO2 dielectric. , 2006, Journal of nanoscience and nanotechnology.

[12]  S. Al-Ani,et al.  Optoelectronic properties n:CdS:In/p-Si heterojunction photodetector , 2006 .

[13]  E. Yanmaz,et al.  Ag diffusion in ZnS thin films prepared by spray pyrolysis , 2007 .

[14]  C. Zhi,et al.  Ultrafine ZnS Nanobelts as Field Emitters , 2007 .

[15]  Yi Sun,et al.  Challenges and Solutions for 10Gbps PON , 2008 .

[16]  S. Roth,et al.  Electrical and optical transport of GaAs/carbon nanotube heterojunctions. , 2008, Nano letters.

[17]  D. Basak,et al.  Encapsulation of 2-3-nm-sized ZnO quantum dots in a SiO2 matrix and observation of negative photoconductivity. , 2009, ACS applied materials & interfaces.

[18]  Takashi Sekiguchi,et al.  Single‐Crystalline ZnS Nanobelts as Ultraviolet‐Light Sensors , 2009 .

[19]  M. Dutta,et al.  Effect of Cu Doping in the Structural, Electrical, Optical, and Optoelectronic Properties of Sol-Gel ZnO Thin Films , 2009 .

[20]  Shui-Tong Lee,et al.  One-dimensional II–VI nanostructures: Synthesis, properties and optoelectronic applications , 2010 .

[21]  J. B. Adams,et al.  A spray drying system for synthesis of rare-earth doped cerium oxide nanoparticles , 2010 .

[22]  D. Perng,et al.  Nano-Structured ZnSe/CIS Heterojunction Solar Cells with ZnSe/ZnO Coaxial Nanowires , 2011 .

[23]  D. Tsai,et al.  Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays. , 2011, ACS nano.

[24]  Zhong Lin Wang,et al.  Ultrathin In2O3 nanowires with diameters below 4 nm: synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications. , 2011, ACS nano.

[25]  Dong Chan Kim,et al.  Dramatically enhanced ultraviolet photosensing mechanism in a n-ZnO nanowires/i-MgO/n-Si structure with highly dense nanowires and ultrathin MgO layers , 2011, Nanotechnology.

[26]  Jin Suk Chung,et al.  Solution‐processed semitransparent p–n graphene oxide:CNT/ZnO heterojunction diodes for visible‐blind UV sensors , 2011 .

[27]  Yang Jiang,et al.  High-gain visible-blind UV photodetectors based on chlorine-doped n-type ZnS nanoribbons with tunable optoelectronic properties , 2011 .

[28]  Li Wang,et al.  Surface induced negative photoconductivity in p-type ZnSe : Bi nanowires and their nano-optoelectronic applications , 2011 .

[29]  J. Jie,et al.  Nano-Schottky barrier diodes based on Sb-doped ZnS nanoribbons with controlled p-type conductivity , 2011 .

[30]  M. A. Mahdi,et al.  High sensitivity and fast response and recovery times in a ZnO nanorod array/p-Si self-powered ultraviolet detector , 2012 .

[31]  Yugang Zhang,et al.  Self-powered and fast-speed photodetectors based on CdS:Ga nanoribbon/Au Schottky diodes , 2012 .

[32]  Li Wang,et al.  Transparent and flexible selenium nanobelt-based visible light photodetector , 2012 .

[33]  Yugang Zhang,et al.  Device structure-dependent field-effect and photoresponse performances of p-type ZnTe:Sb nanoribbons , 2012 .

[34]  Sefaattin Tongay,et al.  High efficiency graphene solar cells by chemical doping. , 2012, Nano letters.

[35]  Hong Jiang,et al.  Realization of a High‐Performance GaN UV Detector by Nanoplasmonic Enhancement , 2012, Advanced materials.

[36]  L. Dai,et al.  Self-powered high performance photodetectors based on CdSe nanobelt/graphene Schottky junctions , 2012 .

[37]  Chih-Yi Liu,et al.  Effects of plasmonic coupling and electrical current on persistent photoconductivity of single-layer graphene on pristine and silver-nanoparticle-coated SiO2/Si. , 2012, Optics express.

[38]  J. Jie,et al.  Fabrication of p-type ZnSe:Sb nanowires for high-performance ultraviolet light photodetector application , 2013, Nanotechnology.

[39]  Chao Xie,et al.  Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors. , 2013, Small.

[40]  L. Luo,et al.  Tuning the p-type conductivity of ZnSe nanowires via silver doping for rectifying and photovoltaic device applications , 2013 .

[41]  L. Luo,et al.  p-type ZnS:N nanowires: Low-temperature solvothermal doping and optoelectronic properties , 2013 .

[42]  Yan Zhang,et al.  High-speed ultraviolet-visible-near infrared photodiodes based on p-ZnS nanoribbon–n-silicon heterojunction , 2013 .

[43]  Han Hu,et al.  Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector. , 2013, ACS applied materials & interfaces.

[44]  L. Luo,et al.  The effect of plasmonic nanoparticles on the optoelectronic characteristics of CdTe nanowires. , 2014, Small.

[45]  Li Wang,et al.  Near‐Infrared Light Photovoltaic Detector Based on GaAs Nanocone Array/Monolayer Graphene Schottky Junction , 2014 .

[46]  J. Jie,et al.  Interfacial state induced ultrasensitive ultraviolet light photodetector with resolved flux down to 85 photons per second , 2015, Nano Research.