On invariant polyhedra of continuous-time linear systems

This note presents some conditions of existence of positively invariant polyhedra for linear continuous-time systems. These conditions are first described algebraically, then interpreted on the basis of the system eigenstructure. Then, a simple state-feedback placement method is described for solving some linear regulation problems under constraints. >

[1]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[2]  Mathukumalli Vidyasagar,et al.  Cross-Positive Matrices , 1970 .

[3]  W. Wolovich State-space and multivariable theory , 1972 .

[4]  G. Poole,et al.  A Survey on M-Matrices , 1974 .

[5]  N. Karcanias,et al.  Poles and zeros of linear multivariable systems : a survey of the algebraic, geometric and complex-variable theory , 1976 .

[6]  J. Pearson Linear multivariable control, a geometric approach , 1977 .

[7]  B. Kouvaritakis,et al.  The output zeroing problem and its relationship to the invariant zero structure : a matrix pencil approach , 1979 .

[8]  Per Hagander,et al.  A new design of constrained controllers for linear systems , 1982, 1982 21st IEEE Conference on Decision and Control.

[9]  G. Bitsoris On the positive invariance of polyhedral sets for discrete-time systems , 1988 .

[10]  G. Bitsoris Positively invariant polyhedral sets of discrete-time linear systems , 1988 .

[11]  A. Benzaouia The regulator problem for class of linear systems with constrained control , 1988 .

[12]  C. Burgat,et al.  Regulator problem for linear discrete-time systems with non-symmetrical constrained control , 1988 .

[13]  J. Hennet Une extension du lemme de Farkas et son application au problème de régulation linéaire sous contrainte , 1989 .

[14]  G. Bitsoris,et al.  Constrained regulation of linear continuous-time dynamical systems , 1989 .

[15]  Jean-Claude Hennet,et al.  Invariant Regulators for a Class of Constrained Linear Systems , 1990 .

[16]  E.B. Castelan,et al.  Robust Invariant Controllers for Constrained Linear Systems , 1992, 1992 American Control Conference.

[17]  Eugênio B. Castelan,et al.  Eigenstructure assignment for state constrained linear continuous time systems , 1992, Autom..

[18]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.