On Some Regularity Criteria for Axisymmetric Navier–Stokes Equations

<jats:p>We point out some criteria that imply regularity of axisymmetric solutions to Navier–Stokes equations. We show that boundedness of <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Vert {v_{r}}/{\sqrt{r^3}}\Vert _{L_2({\mathbb {R}}^3\times (0,T))}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mo>‖</mml:mo></mml:mrow><mml:msub><mml:mi>v</mml:mi><mml:mi>r</mml:mi></mml:msub><mml:mo>/</mml:mo><mml:msqrt><mml:msup><mml:mi>r</mml:mi><mml:mn>3</mml:mn></mml:msup></mml:msqrt><mml:msub><mml:mrow><mml:mo>‖</mml:mo></mml:mrow><mml:mrow><mml:msub><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:msup><mml:mrow><mml:mi>R</mml:mi></mml:mrow><mml:mn>3</mml:mn></mml:msup><mml:mo>×</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mi>T</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> as well as boundedness of <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Vert {\omega _{\varphi }}/{\sqrt{r}} \Vert _{L_2({\mathbb {R}}^3\times (0,T))}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mo>‖</mml:mo></mml:mrow><mml:msub><mml:mi>ω</mml:mi><mml:mi>φ</mml:mi></mml:msub><mml:mo>/</mml:mo><mml:msqrt><mml:mi>r</mml:mi></mml:msqrt><mml:msub><mml:mrow><mml:mo>‖</mml:mo></mml:mrow><mml:mrow><mml:msub><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:msup><mml:mrow><mml:mi>R</mml:mi></mml:mrow><mml:mn>3</mml:mn></mml:msup><mml:mo>×</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mi>T</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>, where <jats:inline-formula><jats:alternatives><jats:tex-math>$$v_r$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>v</mml:mi><mml:mi>r</mml:mi></mml:msub></mml:math></jats:alternatives></jats:inline-formula> is the radial component of velocity and <jats:inline-formula><jats:alternatives><jats:tex-math>$$\omega _{\varphi }$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>ω</mml:mi><mml:mi>φ</mml:mi></mml:msub></mml:math></jats:alternatives></jats:inline-formula> is the angular component of vorticity, imply regularity of weak solutions. </jats:p>

[1]  M. R. Ukhovskii,et al.  Axially symmetric flows of ideal and viscous fluids filling the whole space , 1968 .

[2]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[3]  R. Kohn,et al.  Partial regularity of suitable weak solutions of the navier‐stokes equations , 1982 .

[4]  Milan Pokorný,et al.  On Axially Symmetric Flows in $mathbb R^3$ , 1999 .

[5]  J. Neustupa,et al.  An Interior Regularity Criterion for an Axially Symmetric Suitable Weak Solution to the Navier—Stokes Equations , 2000 .

[6]  Milan Pokorný,et al.  AXISYMMETRIC FLOW OF NAVIER-STOKES FLUID IN THE WHOLE SPACE WITH NON-ZERO ANGULAR VELOCITY COMPONENT , 2001 .

[7]  Dongho Chae,et al.  Digital Object Identifier (DOI) 10.1007/s002090100317 , 2002 .

[8]  Rej Kreml,et al.  A REGULARITY CRITERION FOR THE ANGULAR VELOCITY COMPONENT IN AXISYMMETRIC NAVIER-STOKES EQUATIONS , 2007 .

[9]  Z. Dahmani,et al.  Solution to nonlinear gradient dependent systems with a balance law , 2007 .

[10]  Edriss S. Titi,et al.  Regularity Criteria for the Three-dimensional Navier-Stokes Equations , 2008 .

[11]  W. Zaja̧czkowski A regularity criterion for axially symmetric solutions to the Navier–Stokes equations , 2011 .

[12]  Adam Kubica Remarks on regularity criteria for axially symmetric weak solutions to the Navier–Stokes equations , 2012 .

[13]  J. Málek,et al.  On Axially Symmetric Flows in R 3 , 2013 .

[14]  Hui Chen,et al.  Regularity of 3D axisymmetric Navier-Stokes equations , 2015, 1505.00905.