Most vital segment barriers

We study continuous analogues of "vitality" for discrete network flows/paths, and consider problems related to placing segment barriers that have highest impact on a flow/path in a polygonal domain. This extends the graph-theoretic notion of "most vital arcs" for flows/paths to geometric environments. We give hardness results and efficient algorithms for various versions of the problem, (almost) completely separating hard and polynomially-solvable cases.

[1]  Mihalis Yannakakis,et al.  Shortest Paths Without a Map , 1989, Theor. Comput. Sci..

[2]  David K. Smith Network Flows: Theory, Algorithms, and Applications , 1994 .

[3]  Enrico Nardelli,et al.  A faster computation of the most vital edge of a shortest path , 2001, Inf. Process. Lett..

[4]  Joseph S. B. Mitchell,et al.  Bicriteria Shortest Path Problems in the Plane ( extended abstract ) , 2022 .

[5]  Maw-Sheng Chern,et al.  Finding the Most Vital Arc in the Shortest Path Problem with Fuzzy Arc Lengths , 1994 .

[6]  Anne FINDING THE n MOST VITAL LINKS IN FLOW NETWORKS , 2022 .

[7]  Joseph S. B. Mitchell,et al.  Thick non-crossing paths and minimum-cost flows in polygonal domains , 2007, SCG '07.

[8]  Joseph Geunes,et al.  Modern network interdiction problems and algorithms , 2013 .

[9]  Micha Sharir,et al.  Computing the geodesic center of a simple polygon , 1989, Discret. Comput. Geom..

[10]  Elefterios A. Melissaratos,et al.  Shortest Paths Help Solve Geometric Optimization Problems in Planar Regions , 1992, SIAM J. Comput..

[11]  Joseph S. B. Mitchell,et al.  TSP With Locational Uncertainty: The Adversarial Model , 2017, Symposium on Computational Geometry.

[12]  Joseph S. B. Mitchell,et al.  Path planning in 0/1/ weighted regions with applications , 1988, SCG '88.

[13]  S. Lubore,et al.  Determining the most vital link in a flow network , 1971 .

[14]  Maarten Löffler,et al.  Existence and Computation of Tours through Imprecise Points , 2011, Int. J. Comput. Geom. Appl..

[15]  Deok-Soo Kim,et al.  Polygon offsetting using a Voronoi diagram and two stacks , 1998, Comput. Aided Des..

[16]  Neng Fan,et al.  Analysis of budget for interdiction on multicommodity network flows , 2017, J. Glob. Optim..

[17]  Eytan Modiano,et al.  Geographic max-flow and min-cut under a circular disk failure model , 2012, 2012 Proceedings IEEE INFOCOM.

[18]  Rolf Niedermeier,et al.  A Refined Complexity Analysis of Finding the Most Vital Edges for Undirected Shortest Paths , 2015, CIAC.

[19]  Joseph S. B. Mitchell,et al.  On maximum flows in polyhedral domains , 1988, SCG '88.

[20]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..

[21]  Leonidas J. Guibas,et al.  Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons , 1987, Algorithmica.

[22]  Valentin Polishchuk,et al.  Optimal Geometric Flows via Dual Programs , 2014, SoCG.

[23]  Ricardo A. Collado,et al.  Network interdiction – models , applications , unexplored directions , 2010 .

[24]  Francis Y. L. Chin,et al.  Finding the Medial Axis of a Simple Polygon in Linear Time , 1995, ISAAC.

[25]  R. Vohra,et al.  Finding the most vital arcs in a network , 1989 .

[26]  Joseph S. B. Mitchell,et al.  Geometric Shortest Paths and Network Optimization , 2000, Handbook of Computational Geometry.

[27]  B. Golden A problem in network interdiction , 1978 .

[28]  Bo An,et al.  Playing Repeated Network Interdiction Games with Semi-Bandit Feedback , 2017, IJCAI.

[29]  Gerald G. Brown,et al.  "Sometimes There is No Most-Vital" Arc: Assessing and Improving the Operational Resilience of Systems , 2013 .

[30]  Gilbert Strang,et al.  Maximal flow through a domain , 1983, Math. Program..