Slowly fading super-luminous supernovae that are not pair-instability explosions

Super-luminous supernovae that radiate more than 1044 ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1–4. Some evolve slowly, resembling models of ‘pair-instability’ supernovae. Such models involve stars with original masses 140–260 times that of the Sun that now have carbon–oxygen cores of 65–130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron–positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of 56Ni are synthesized; this isotope decays to 56Fe via 56Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae, which are not powered by radioactivity. Modelling our observations with 10–16 solar masses of magnetar-energized ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 × 10−6 times that of the core-collapse rate.

A. Pastorello | S. Gezari | A. Rest | R. Margutti | E. Cappellaro | G. Leloudas | R. P. Kudritzki | E. Berger | P. A. Price | S. J. Smartt | D. R. Young | S. Taubenberger | M. T. Botticella | L. Tomasella | G. Narayan | S. Valenti | T.-W. Chen | W. Sweeney | C. W. Stubbs | N. Elias-Rosa | R. Chornock | N. Kaiser | N. Metcalfe | J. Sollerman | S. Benetti | A. Soderberg | E. Kankare | R. Kotak | W. M. Wood-Vasey | F. Taddia | S. Mattila | J. L. Tonry | R. J. Foley | W. S. Burgett | E. A. Magnier | A. Jerkstrand | A. Morales-Garoffolo | M. Fraser | D. Milisavljevic | S. Gezari | R. Kotak | S. Smartt | W. Wood-Vasey | J. Sollerman | A. Riess | S. Rodney | R. Kirshner | D. Young | E. Berger | C. Stubbs | D. Scolnic | A. Rest | R. Foley | R. Chornock | W. Burgett | K. Chambers | H. Flewelling | N. Kaiser | R. Kudritzki | N. Metcalfe | J. Tonry | M. McCrum | M. Nicholl | R. Margutti | D. Howell | S. Valenti | G. Narayan | E. Magnier | P. Price | M. Huber | C. Waters | W. Sweeney | M. Botticella | Y. Urata | S. Taubenberger | E. Cappellaro | S. Benetti | R. Lunnan | D. Milisavljevic | N. Sanders | G. Leloudas | F. Taddia | F. Bresolin | C. Inserra | E. Kankare | S. Mattila | A. Pastorello | N. Elias-Rosa | A. Soderberg | M. Fraser | T. Kangas | L. Tomasella | S. Sim | A. Jerkstrand | M. Nicholl | D. Scolnic | D. A. Howell | R. Lunnan | Y. Urata | A. G. Riess | R. P. Kirshner | F. Bresolin | C. Inserra | S. A. Sim | C. Waters | T. Kangas | T.-W. Chen | D. Wright | M. E. Huber | H. A. Flewelling | C. Waters | K. Chambers | M. McCrum | N. Sanders | Ting-Wan Chen | S. Rodney | J. Morgan | K. Smith | A. Morales-Garoffolo | D. Wright | J. Morgan | K. Smith | D. Young | P. Price | D. Wright

[1]  S. E. Woosley,et al.  The Nucleosynthetic Signature of Population III , 2002 .

[2]  Philip Chang,et al.  Magnetar Spin-Down, Hyperenergetic Supernovae, and Gamma-Ray Bursts , 2004, astro-ph/0401555.

[3]  A. Pastorello,et al.  SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL , 2013, 1304.3320.

[4]  G. Shaviv,et al.  INSTABILITIES IN HIGHLY EVOLVED STELLAR MODELS. , 1967 .

[5]  E. Nakar,et al.  CONSTRAINTS ON SHALLOW 56Ni FROM THE EARLY LIGHT CURVES OF TYPE Ia SUPERNOVAE , 2012, 1211.6438.

[6]  G. Meynet,et al.  Evolution and fate of very massive stars , 2013, 1305.2099.

[7]  Las Cumbres Observatory Global Telescope Network,et al.  ULTRA-BRIGHT OPTICAL TRANSIENTS ARE LINKED WITH TYPE Ic SUPERNOVAE , 2010, 1008.2674.

[8]  S. Blondin,et al.  Radiative properties of pair-instability supernova explosions , 2012, 1210.6163.

[9]  Nick Kaiser,et al.  The Pan-STARRS PS1 Image Processing Pipeline , 2006 .

[10]  I. Chilingarian,et al.  A universal ultraviolet–optical colour–colour–magnitude relation of galaxies★ , 2011, 1102.1159.

[11]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[12]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[13]  M. J. Page,et al.  Photometric calibration of the Swift ultraviolet/optical telescope , 2007, 0708.2259.

[14]  S. E. Woosley,et al.  Pulsational pair instability as an explanation for the most luminous supernovae , 2007, Nature.

[15]  R. J. Wainscoat,et al.  FIRST RESULTS FROM Pan-STARRS1: FAINT, HIGH PROPER MOTION WHITE DWARFS IN THE MEDIUM-DEEP FIELDS , 2011, 1110.0060.

[16]  E. Phinney,et al.  Signatures of pulsars in the light curves of newly formed supernova remnants , 2013, 1304.5326.

[17]  E. O. Ofek,et al.  Hydrogen-poor superluminous stellar explosions , 2009, Nature.

[18]  Testing LMC Microlensing Scenarios: The Discrimination Power of the SuperMACHO Microlensing Survey , 2005, astro-ph/0509240.

[19]  E. Chatzopoulos,et al.  EFFECTS OF ROTATION ON THE MINIMUM MASS OF PRIMORDIAL PROGENITORS OF PAIR-INSTABILITY SUPERNOVAE , 2012, 1201.1328.

[20]  Lars Bildsten,et al.  SUPERNOVA LIGHT CURVES POWERED BY YOUNG MAGNETARS , 2009, 0911.0680.

[21]  S. Woosley,et al.  On the nature of supernovae Ib and Ic , 2012, 1205.5349.

[22]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[23]  D. Kasen,et al.  SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION , 2012, 1210.7240.

[24]  A. Gal-yam Luminous Supernovae , 2012, Science.

[25]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[26]  J. Wheeler,et al.  Type I Supernovae , 1974 .

[27]  S. Smartt,et al.  PS1-10afx AT z = 1.388: PAN-STARRS1 DISCOVERY OF A NEW TYPE OF SUPERLUMINOUS SUPERNOVA , 2013, 1302.0009.

[28]  D. Kasen,et al.  PAIR INSTABILITY SUPERNOVAE: LIGHT CURVES, SPECTRA, AND SHOCK BREAKOUT , 2011, 1101.3336.

[29]  D. Bersier,et al.  Core-collapse supernovae in low-metallicity environments and future all-sky transient surveys , 2008, 0807.3070.

[30]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[31]  D. Kasen,et al.  Direct Analysis of Spectra of Type Ib Supernovae , 1999, astro-ph/0106367.

[32]  D. Whalen,et al.  THE EARLY EVOLUTION OF PRIMORDIAL PAIR-INSTABILITY SUPERNOVAE , 2010, 1010.4360.

[33]  S. Smartt,et al.  ULTRALUMINOUS SUPERNOVAE AS A NEW PROBE OF THE INTERSTELLAR MEDIUM IN DISTANT GALAXIES , 2012, 1206.4050.

[34]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[35]  J. Neill,et al.  THE EXTREME HOSTS OF EXTREME SUPERNOVAE , 2010, 1011.3512.

[36]  M. Sullivan,et al.  Supernova 2007bi as a pair-instability explosion , 2009, Nature.

[37]  D. Bersier,et al.  Two type Ic supernovae in low-metallicity, dwarf galaxies: Diversity of explosions , 2009, 0910.2248.

[38]  R. Kotak,et al.  THE TYPE IIb SUPERNOVA 2011dh FROM A SUPERGIANT PROGENITOR , 2012, 1207.5975.

[39]  Eva K. Grebel,et al.  Empirical color transformations between SDSS photometry and Other photometric systems. , 2005 .

[40]  C. Fransson,et al.  The 44Ti-powered spectrum of SN 1987A , 2011, 1103.3653.

[41]  W. M. Wood-Vasey,et al.  Pan-STARRS1 DISCOVERY OF TWO ULTRALUMINOUS SUPERNOVAE AT z ≈ 0.9 , 2011, 1107.3552.

[42]  D. Perley,et al.  Discovery of a Super-Luminous Supernova, PTF12dam , 2012 .

[43]  I. Chilingarian,et al.  Analytical approximations of K-corrections in optical and near-infrared bands , 2010, 1002.2360.

[44]  Chemical enrichment in the carbon-enhanced damped Lyα system by population III supernovae , 2011 .

[45]  P. Nugent,et al.  Evidence for a High-Velocity Carbon-rich Layer in the Type Ia SN 1990N , 1997 .

[46]  Hideyuki Umeda,et al.  How Much 56Ni Can Be Produced in Core-Collapse Supernovae? Evolution and Explosions of 30-100 M☉ Stars , 2007, 0707.2598.

[47]  Adam G. Riess,et al.  HIGH-REDSHIFT SUPERNOVA RATES , 2004 .

[48]  S. Blondin,et al.  Superluminous supernovae: 56Ni power versus magnetar radiation , 2012, 1208.1214.

[49]  S. Smartt,et al.  PS1-10bzj: A FAST, HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA IN A METAL-POOR HOST GALAXY , 2013, 1303.1531.

[50]  K. Nomoto,et al.  A CORE-COLLAPSE SUPERNOVA MODEL FOR THE EXTREMELY LUMINOUS TYPE Ic SUPERNOVA 2007bi: AN ALTERNATIVE TO THE PAIR-INSTABILITY SUPERNOVA MODEL , 2010, 1004.2967.

[51]  Z. Barkat,et al.  DYNAMICS OF SUPERNOVA EXPLOSION RESULTING FROM PAIR FORMATION. , 1967 .

[52]  Nozomu Tominaga,et al.  Models for the Type Ic Hypernova SN 2003lw associated with GRB 031203 , 2006, astro-ph/0603516.

[53]  S. B. Cenko,et al.  THE FIRST SYSTEMATIC STUDY OF TYPE Ibc SUPERNOVA MULTI-BAND LIGHT CURVES , 2010, 1011.4959.

[54]  T. Grav,et al.  An ultraviolet–optical flare from the tidal disruption of a helium-rich stellar core , 2012, Nature.

[55]  Y. Pei,et al.  Interstellar dust from the Milky Way to the Magellanic Clouds , 1992 .

[56]  P. Dokkum Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.

[57]  W. M. Wood-Vasey,et al.  THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7137.

[58]  R. J. Wainscoat,et al.  THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.

[59]  J. Pringle Do pulsars make supernovae? , 1974, Nature.

[60]  W. Arnett Type I supernovae. I. Analytic solutions for the early part of the light curve , 1982 .

[61]  R. Kotak,et al.  A SPECTROSCOPICALLY NORMAL TYPE Ic SUPERNOVA FROM A VERY MASSIVE PROGENITOR , 2012, 1203.1933.

[62]  S. Woosley BRIGHT SUPERNOVAE FROM MAGNETAR BIRTH , 2009, 0911.0698.

[63]  Jeff Cooke,et al.  Superluminous supernovae at redshifts of 2.05 and 3.90 , 2012, Nature.